PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2443–o2444.
Published online 2010 August 28. doi:  10.1107/S1600536810034288
PMCID: PMC3008057

Redetermination of bis­{(1S,2S,4S,5R)-2-[(R)-hy­droxy(6-meth­oxy-4-quinol­yl)meth­yl]-5-vinyl­quinuclidinium} sulfate dihydrate

Abstract

The structure of the title compound, known as quinine sulfate dihydrate, 2C20H25N2O2 +·SO4 2−·2H2O, was previously reported by Mendel [Proc. K. Ned. Akad. Wet. (1955), 58, 132–134], but only the [010] projection was determined. Hence, we have redetermined its crystal structure at 100 K using three-dimensional data. The asymmetric unit consists of a quininium cation, viz. (R)-(6-meth­oxy­quinolinium-4-yl)[(1S,2S,4S,5R)-5-vinyl­quinuclid­in­ium-2-yl]methanol, one half of a sulfate anion and a water mol­ecule. The S atom occupies a special position on a twofold axis. The packing is characterized by infinite columns, consisting of sulfate anions and water mol­ecules, linked through hydrogen bonds along the b axis, and further stabilized by hydrogen bonds to quininium cations. The quininium cations inter­act further through C—H(...)O and C—H(...)π inter­actions.

Related literature

For the biological activity of quinoline-based anti­malarial drugs, see: Chou et al. (1980 [triangle]). For related structures and a previous determination of the title compound, see: Mendel (1955 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2443-scheme1.jpg

Experimental

Crystal data

  • 2C20H25N2O2 +·SO4 2−·2H2O
  • M r = 782.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2443-efi8.jpg
  • a = 20.180 (7) Å
  • b = 6.637 (2) Å
  • c = 15.316 (6) Å
  • β = 113.288 (9)°
  • V = 1884.2 (11) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 1.31 mm−1
  • T = 100 K
  • 0.24 × 0.15 × 0.04 mm

Data collection

  • Bruker SMART 6000 diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.743, T max = 0.949
  • 9588 measured reflections
  • 3319 independent reflections
  • 3112 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.095
  • S = 1.04
  • 3319 reflections
  • 251 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1339 Friedel pairs
  • Flack parameter: 0.00 (2)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLUTON (Spek, 2009 [triangle]) and DIAMOND (Brandenburg, 2010 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034288/lx2164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034288/lx2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Katholieke Universiteit Leuven for financial support and K. Van Hecke, M. Ovaere and K. Robeyns for help and discussions.

supplementary crystallographic information

Comment

Malaria is the most widespread and deadly humain infectious disease that is presently endemic in tropical and subtropical countries, covering approximately half of the world population. Its treatement is sometimes complicated with the appearence of antimalarial-resistant Plasmodium falciparum strains, arising in regions due to a long time use of a specific antimalarial drug molecule. Quinine, a quinoline core alkaloid extracted from the bark of cinchona tree, is considered in certain countries as medication of last resort against malaria and it is solely used to fight parasite strains that had resisted to other available antimalarial drug molecules.

According to Chou et al. (1980) the biological activity of quinoline-based antimalarial drugs is based on the formation of cytotoxic complexes between the latter molecules and ferriprotoporphyrin IX (hematin or hemin). The knowledge of the three-dimensional structure of such complexes should be a significant step towards the elucidation of its mechanism of action and the design of new antimalarial drugs. In an attempt to crystallize porphyrin-quinine complexes, quinine sulfate dihyrate was cocrystallized with the acidic form of [Fe(III) meso-tetra(4-sulfonatophenyl)porphine]chloride at pH 4.8 from a water/propyleneglycol mixture. However, the title compound was obtained of which the [010] projection of the crystal structure has previously been determined (Mendel, 1955). Hence, we have redetermined the structure at 100 K (Fig. 1).

The unit cell comprises two formula units; each of them consists of one sulfate anion, two water molecules, and two quininium cations, (R)-(6-methoxyquinolinium-4-yl)[(1S,2S,4S,5R)-5-vinylquinuclidinium-2-yl]methanol. The sulfur atom occupies a special position on a twofold axis; both cations are related by a twofold axis. The quinoline ring is planar; the maximal deviation (0.026 (2) Å) from the best plane is observed for C10. The angle between the best planes through the quinoline rings of both cations is 58.8 (1)°. The packing is characterized by infinite columns along the b-axis, in which sulfate anions and water molecules are alternately tied together through hydrogen bonds O3—H3B···04 and O3—H3A···O5 (Fig. 2, Table 1). These columns interact further with the quininium cations by hydrogen bonding (N2—H2N···O5, O2—H2···O3, C16—H16A···O3, C11—H11···O4; Table 1). The quininium cations interact further with each other by C—H···π (Fig. 3, Table 1) interactions and a C—H···O interaction (C17—H17B···O24; Table 1).

Experimental

Quinine sulfate dihydrate, purchased from Acros Organics (Geel, Belgium), was added to the acid form of [Fe(III)meso-tetra(4-sulfonatophenyl)porphine]chloride (FeTSPP) in the mixture of water and propyleneglycol 6:4 to induce reaction between the two compounds at room temperature. The pH was fixed at 4.8 using 0.01 M acetate buffer and adjusted with either HCl or NaOH. Colourless plate-like crystals, suitable for X-ray diffraction, were obtained within five to six h.

Refinement

Hydrogen atoms attached to N2 and O3 were located in a difference Fourier map. The other hydrogen atoms were positioned with idealized geometry using a riding model with C—H = 0.95–0.99 Å. All hydrogen atoms were further refined with isotropic temperature factors fixed at 1.2 or 1.5 times Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Fig. 2.
N—H···O and O—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, y, - z + 2; (ii) x, y - 1, z; (iii) x, y + 1, z]
Fig. 3.
C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (iv) -x + 1/2, y + 1/2, -z + 1; (v) x - 1/2, y - 1/2, z; (vi) -x + 1/2, y - 1/2, ...

Crystal data

2C20H25N2O2+·SO42·2H2OF(000) = 836
Mr = 782.94Dx = 1.380 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2yCell parameters from 3041 reflections
a = 20.180 (7) Åθ = 3.1–70.8°
b = 6.637 (2) ŵ = 1.31 mm1
c = 15.316 (6) ÅT = 100 K
β = 113.288 (9)°Plate, colourless
V = 1884.2 (11) Å30.24 × 0.15 × 0.04 mm
Z = 2

Data collection

Bruker SMART 6000 diffractometer3319 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
crossed Globel mirrorsRint = 0.063
ω and [var phi] scanθmax = 70.7°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −24→23
Tmin = 0.743, Tmax = 0.949k = −8→7
9588 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3319 reflectionsΔρmax = 0.32 e Å3
251 parametersΔρmin = −0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1339 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.50000.51309 (11)1.00000.01395 (17)
O10.47279 (8)0.1096 (3)0.69000 (11)0.0189 (3)
O20.32201 (8)0.9132 (3)0.79914 (10)0.0157 (3)
H20.35330.94430.85280.024*
O30.40574 (8)0.9948 (3)0.98222 (10)0.0203 (3)
H3A0.43081.10280.98750.024*
H3B0.43780.90421.00970.024*
O40.47838 (9)0.6396 (3)1.06305 (11)0.0224 (4)
O50.43932 (8)0.3783 (3)0.94218 (11)0.0189 (4)
C10.48547 (12)0.0841 (4)0.78784 (16)0.0209 (5)
H1A0.51640.19340.82520.031*
H1B0.5094−0.04560.81040.031*
H1C0.43940.08690.79510.031*
C20.43495 (11)0.2754 (4)0.64592 (15)0.0147 (4)
C30.42548 (11)0.2932 (4)0.54931 (15)0.0178 (5)
H30.44230.18990.52030.021*
C40.39215 (11)0.4589 (4)0.49829 (15)0.0185 (5)
H40.38740.47120.43430.022*
C50.36455 (11)0.6127 (4)0.53810 (15)0.0163 (4)
C60.30432 (11)0.9131 (4)0.52007 (15)0.0167 (4)
H60.28191.02680.48230.020*
C70.30701 (11)0.9037 (4)0.61389 (15)0.0156 (4)
H70.28591.00760.63700.019*
C80.34015 (11)0.7442 (4)0.67093 (14)0.0141 (4)
C90.37165 (10)0.5906 (4)0.63416 (15)0.0141 (4)
C100.40826 (10)0.4200 (4)0.68725 (14)0.0145 (4)
H100.41430.40600.75170.017*
C110.34041 (11)0.7262 (4)0.77006 (14)0.0138 (4)
H110.38960.68520.81570.017*
C120.28570 (10)0.5609 (3)0.76677 (14)0.0132 (4)
H120.29280.44570.72930.016*
C130.20590 (10)0.6274 (4)0.71813 (14)0.0150 (4)
H13A0.20340.77280.70280.018*
H13B0.18180.55190.65810.018*
C140.16724 (11)0.5862 (4)0.78526 (15)0.0161 (5)
H140.11550.62820.75390.019*
C150.20490 (12)0.7091 (4)0.87635 (16)0.0181 (5)
H15A0.17790.69710.91780.022*
H15B0.20640.85300.86040.022*
C160.28208 (11)0.6285 (4)0.92844 (14)0.0166 (4)
H16A0.31690.74160.94500.020*
H16B0.28640.56050.98800.020*
C170.25215 (11)0.2979 (4)0.85222 (15)0.0159 (5)
H17A0.26510.22790.91380.019*
H17B0.26010.20380.80720.019*
C180.17165 (11)0.3630 (4)0.81314 (15)0.0154 (5)
H180.15380.34830.86520.018*
C190.12712 (12)0.2289 (4)0.73183 (16)0.0216 (5)
H190.13650.23260.67570.026*
C200.07601 (13)0.1066 (4)0.73313 (19)0.0281 (6)
H20A0.06520.09910.78810.034*
H20B0.05000.02600.67910.034*
N10.33113 (10)0.7734 (3)0.48223 (13)0.0185 (4)
N20.29863 (9)0.4822 (3)0.86512 (12)0.0134 (4)
H2N0.34670.44380.89480.016*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0136 (3)0.0123 (4)0.0143 (3)0.0000.0038 (3)0.000
O10.0200 (7)0.0183 (9)0.0194 (7)0.0051 (6)0.0089 (6)0.0009 (7)
O20.0184 (7)0.0137 (8)0.0128 (6)0.0003 (6)0.0039 (6)−0.0020 (6)
O30.0190 (7)0.0168 (8)0.0208 (7)0.0013 (7)0.0032 (6)0.0005 (7)
O40.0266 (8)0.0199 (9)0.0218 (8)0.0033 (7)0.0108 (7)−0.0009 (7)
O50.0150 (8)0.0146 (9)0.0226 (8)0.0019 (6)0.0024 (6)0.0014 (7)
C10.0204 (10)0.0243 (13)0.0195 (10)0.0045 (9)0.0094 (9)0.0054 (10)
C20.0112 (9)0.0147 (12)0.0187 (10)−0.0007 (8)0.0064 (8)0.0003 (9)
C30.0189 (10)0.0187 (12)0.0196 (10)−0.0018 (9)0.0114 (9)−0.0040 (10)
C40.0195 (10)0.0236 (14)0.0143 (9)−0.0032 (9)0.0087 (8)−0.0021 (9)
C50.0144 (9)0.0180 (12)0.0160 (10)−0.0019 (9)0.0055 (8)0.0009 (10)
C60.0158 (10)0.0165 (11)0.0161 (10)−0.0013 (9)0.0044 (8)0.0032 (9)
C70.0154 (9)0.0144 (11)0.0175 (10)−0.0004 (9)0.0070 (8)0.0010 (9)
C80.0105 (9)0.0158 (11)0.0143 (9)−0.0032 (8)0.0030 (7)−0.0004 (9)
C90.0107 (9)0.0167 (11)0.0146 (9)−0.0045 (8)0.0047 (8)−0.0022 (9)
C100.0128 (9)0.0194 (12)0.0128 (9)−0.0024 (9)0.0066 (8)−0.0001 (9)
C110.0140 (10)0.0133 (11)0.0142 (9)0.0017 (8)0.0056 (8)−0.0015 (9)
C120.0142 (9)0.0167 (12)0.0100 (9)0.0004 (8)0.0063 (7)−0.0005 (8)
C130.0131 (9)0.0182 (12)0.0128 (9)−0.0002 (8)0.0042 (8)0.0009 (9)
C140.0117 (9)0.0210 (13)0.0149 (9)0.0028 (9)0.0046 (8)−0.0004 (9)
C150.0211 (11)0.0161 (12)0.0199 (10)0.0006 (9)0.0110 (9)−0.0025 (10)
C160.0209 (10)0.0161 (12)0.0130 (9)−0.0034 (9)0.0069 (8)−0.0024 (9)
C170.0195 (10)0.0114 (11)0.0175 (10)−0.0008 (9)0.0082 (8)0.0005 (9)
C180.0151 (10)0.0180 (12)0.0157 (10)−0.0041 (8)0.0090 (8)−0.0018 (9)
C190.0220 (11)0.0215 (13)0.0221 (11)−0.0040 (10)0.0096 (9)−0.0046 (10)
C200.0257 (12)0.0260 (15)0.0348 (13)−0.0075 (11)0.0144 (10)−0.0085 (12)
N10.0176 (8)0.0223 (11)0.0157 (8)−0.0016 (8)0.0066 (7)0.0018 (8)
N20.0114 (7)0.0144 (10)0.0144 (8)0.0000 (7)0.0050 (6)0.0027 (8)

Geometric parameters (Å, °)

S1—O41.4703 (17)C10—H100.9500
S1—O4i1.4703 (17)C11—C121.543 (3)
S1—O5i1.4923 (16)C11—H111.0000
S1—O51.4923 (16)C12—N21.517 (3)
O1—C21.357 (3)C12—C131.547 (3)
O1—C11.427 (3)C12—H121.0000
O2—C111.417 (3)C13—C141.541 (3)
O2—H20.8400C13—H13A0.9900
O3—H3A0.8626C13—H13B0.9900
O3—H3B0.8622C14—C151.533 (3)
C1—H1A0.9800C14—C181.535 (4)
C1—H1B0.9800C14—H141.0000
C1—H1C0.9800C15—C161.538 (3)
C2—C101.372 (3)C15—H15A0.9900
C2—C31.420 (3)C15—H15B0.9900
C3—C41.362 (4)C16—N21.500 (3)
C3—H30.9500C16—H16A0.9900
C4—C51.412 (3)C16—H16B0.9900
C4—H40.9500C17—N21.506 (3)
C5—N11.367 (3)C17—C181.554 (3)
C5—C91.428 (3)C17—H17A0.9900
C6—N11.317 (3)C17—H17B0.9900
C6—C71.418 (3)C18—C191.505 (3)
C6—H60.9500C18—H181.0000
C7—C81.367 (3)C19—C201.319 (4)
C7—H70.9500C19—H190.9500
C8—C91.429 (3)C20—H20A0.9500
C8—C111.521 (3)C20—H20B0.9500
C9—C101.419 (3)N2—H2N0.9300
O4—S1—O4i110.34 (12)C11—C12—H12107.4
O4—S1—O5i109.85 (9)C13—C12—H12107.4
O4i—S1—O5i110.20 (9)C14—C13—C12109.47 (17)
O4—S1—O5110.20 (9)C14—C13—H13A109.8
O4i—S1—O5109.85 (9)C12—C13—H13A109.8
O5i—S1—O5106.33 (11)C14—C13—H13B109.8
C2—O1—C1116.78 (18)C12—C13—H13B109.8
C11—O2—H2109.5H13A—C13—H13B108.2
H3A—O3—H3B103.5C15—C14—C18107.87 (18)
O1—C1—H1A109.5C15—C14—C13108.27 (18)
O1—C1—H1B109.5C18—C14—C13111.57 (18)
H1A—C1—H1B109.5C15—C14—H14109.7
O1—C1—H1C109.5C18—C14—H14109.7
H1A—C1—H1C109.5C13—C14—H14109.7
H1B—C1—H1C109.5C14—C15—C16108.85 (18)
O1—C2—C10125.74 (19)C14—C15—H15A109.9
O1—C2—C3113.79 (19)C16—C15—H15A109.9
C10—C2—C3120.5 (2)C14—C15—H15B109.9
C4—C3—C2119.8 (2)C16—C15—H15B109.9
C4—C3—H3120.1H15A—C15—H15B108.3
C2—C3—H3120.1N2—C16—C15109.17 (17)
C3—C4—C5121.70 (19)N2—C16—H16A109.8
C3—C4—H4119.2C15—C16—H16A109.8
C5—C4—H4119.2N2—C16—H16B109.8
N1—C5—C4118.38 (19)C15—C16—H16B109.8
N1—C5—C9123.3 (2)H16A—C16—H16B108.3
C4—C5—C9118.4 (2)N2—C17—C18109.07 (18)
N1—C6—C7123.8 (2)N2—C17—H17A109.9
N1—C6—H6118.1C18—C17—H17A109.9
C7—C6—H6118.1N2—C17—H17B109.9
C8—C7—C6119.7 (2)C18—C17—H17B109.9
C8—C7—H7120.2H17A—C17—H17B108.3
C6—C7—H7120.2C19—C18—C14113.00 (19)
C7—C8—C9118.79 (19)C19—C18—C17110.20 (19)
C7—C8—C11120.4 (2)C14—C18—C17108.20 (18)
C9—C8—C11120.7 (2)C19—C18—H18108.4
C10—C9—C5119.3 (2)C14—C18—H18108.4
C10—C9—C8123.71 (19)C17—C18—H18108.4
C5—C9—C8117.0 (2)C20—C19—C18124.5 (2)
C2—C10—C9120.28 (19)C20—C19—H19117.8
C2—C10—H10119.9C18—C19—H19117.8
C9—C10—H10119.9C19—C20—H20A120.0
O2—C11—C8110.29 (18)C19—C20—H20B120.0
O2—C11—C12111.09 (16)H20A—C20—H20B120.0
C8—C11—C12107.66 (17)C6—N1—C5117.42 (18)
O2—C11—H11109.3C16—N2—C17108.91 (16)
C8—C11—H11109.3C16—N2—C12115.10 (17)
C12—C11—H11109.3C17—N2—C12107.21 (16)
N2—C12—C11111.88 (16)C16—N2—H2N108.5
N2—C12—C13108.31 (15)C17—N2—H2N108.5
C11—C12—C13114.11 (19)C12—N2—H2N108.5
N2—C12—H12107.4
C1—O1—C2—C100.3 (3)O2—C11—C12—C1345.5 (2)
C1—O1—C2—C3178.89 (18)C8—C11—C12—C13−75.4 (2)
O1—C2—C3—C4−176.14 (19)N2—C12—C13—C14−1.2 (3)
C10—C2—C3—C42.6 (3)C11—C12—C13—C14−126.55 (19)
C2—C3—C4—C5−1.9 (3)C12—C13—C14—C1560.7 (2)
C3—C4—C5—N1−179.3 (2)C12—C13—C14—C18−57.9 (2)
C3—C4—C5—C9−0.6 (3)C18—C14—C15—C1655.2 (2)
N1—C6—C7—C81.3 (3)C13—C14—C15—C16−65.7 (2)
C6—C7—C8—C90.2 (3)C14—C15—C16—N29.5 (2)
C6—C7—C8—C11−177.01 (19)C15—C14—C18—C19171.51 (16)
N1—C5—C9—C10−179.0 (2)C13—C14—C18—C19−69.7 (2)
C4—C5—C9—C102.3 (3)C15—C14—C18—C17−66.2 (2)
N1—C5—C9—C81.6 (3)C13—C14—C18—C1752.6 (2)
C4—C5—C9—C8−177.13 (19)N2—C17—C18—C19133.72 (19)
C7—C8—C9—C10179.07 (19)N2—C17—C18—C149.7 (2)
C11—C8—C9—C10−3.7 (3)C14—C18—C19—C20−123.4 (3)
C7—C8—C9—C5−1.5 (3)C17—C18—C19—C20115.4 (3)
C11—C8—C9—C5175.70 (18)C7—C6—N1—C5−1.3 (3)
O1—C2—C10—C9177.73 (19)C4—C5—N1—C6178.53 (19)
C3—C2—C10—C9−0.8 (3)C9—C5—N1—C6−0.2 (3)
C5—C9—C10—C2−1.6 (3)C15—C16—N2—C17−67.5 (2)
C8—C9—C10—C2177.8 (2)C15—C16—N2—C1252.9 (2)
C7—C8—C11—O2−16.4 (3)C18—C17—N2—C1655.8 (2)
C9—C8—C11—O2166.46 (18)C18—C17—N2—C12−69.36 (19)
C7—C8—C11—C12105.0 (2)C11—C12—N2—C1669.1 (2)
C9—C8—C11—C12−72.2 (2)C13—C12—N2—C16−57.5 (2)
O2—C11—C12—N2−78.0 (2)C11—C12—N2—C17−169.59 (17)
C8—C11—C12—N2161.20 (17)C13—C12—N2—C1763.8 (2)

Symmetry codes: (i) −x+1, y, −z+2.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C10 and N1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i1.002.593.584 (3)171
C16—H16A···O30.992.363.345 (3)176
C17—H17B···O2ii0.992.333.174 (3)143
N2—H2N···O50.931.772.698 (3)175
O2—H2···O30.841.872.695 (2)166
O3—H3A···O5iii0.861.992.765 (3)149
O3—H3B···O40.861.972.794 (3)159
C6—H6···Cg2iv0.952.673.482 (3)144
C20—H20B···Cg1v0.952.853.530 (3)130

Symmetry codes: (i) −x+1, y, −z+2; (ii) x, y−1, z; (iii) x, y+1, z; (iv) −x+1/2, y+1/2, −z+1; (v) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2164).

References

  • Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chou, A. C., Chevli, R. & Fitch, C. D. (1980). Biochemistry, 19, 1543–1549. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Mendel, H. (1955). Proc. K. Ned. Akad. Wet.58, 132–134.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography