PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1143.
Published online 2010 August 21. doi:  10.1107/S1600536810033088
PMCID: PMC3008055

{4-Chloro-2-[(2-hy­droxy­eth­yl)imino­meth­yl]phenolato}{4-chloro-2-[(2-oxido­eth­yl)imino­meth­yl]phenolato}cobalt(III)

Abstract

In the title mononuclear cobalt(III) compound, [Co(C9H8ClNO2)(C9H9ClNO2)], the CoII atom is six-coordinated by two imine N atoms, two phenolate O atoms, and one hy­droxy and one oxide O atom from two Schiff base ligands, forming an octa­hedral geometry. In the crystal structure, adjacent mol­ecules are linked through inter­molecular O—H(...)O hydrogen bonds. The 2-oxidoethyl group is disordered over two positions in a 0.638 (3):0.362 (3) ratio.

Related literature

For general background to Schiff base cobalt(III) complexes, see: Zhang et al. (2010 [triangle]); Rodriguez et al. (2010 [triangle]); Khalaji et al. (2010 [triangle]); Luo & Luo (2010 [triangle]). For related cobalt complexes with octa­hedral coordination, see: De et al. (2001 [triangle]); Sun (2005 [triangle]); Zhu et al. (2003 [triangle]); Yuan (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1143-scheme1.jpg

Experimental

Crystal data

  • [Co(C9H8ClNO2)(C9H9ClNO2)]
  • M r = 455.17
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-66-m1143-efi1.jpg
  • a = 18.675 (2) Å
  • c = 27.595 (3) Å
  • V = 8334.6 (16) Å3
  • Z = 18
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 298 K
  • 0.32 × 0.30 × 0.27 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.692, T max = 0.730
  • 13818 measured reflections
  • 4045 independent reflections
  • 2390 reflections with I > 2σ(I)
  • R int = 0.126

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.135
  • S = 1.00
  • 4045 reflections
  • 257 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033088/hg2699sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033088/hg2699Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the Linyi Normal University for supporting this work.

supplementary crystallographic information

Comment

Cobalt(III) complexes with Schiff bases have been widely investigated in coordination chemistry and biological chemistry (Zhang et al., 2010; Rodriguez et al., 2010; Khalaji et al., 2010; Luo & Luo, 2010). In the present paper, the title new cobalt(III) complex with the Schiff base ligand 4-chloro-2-[(2-hydroxyethylimino)methyl]phenol, is reported.

The CoIII atom in the title complex (Fig. 1) is six-coordinated by two imine N atoms, two phenolate O atoms, and two hydroxy O atoms from two Schiff base ligands, forming an octahedral geometry. The mainly difference in the two ligands is that one of the hydroxy groups is deprotonated. The bond lengths and angles (Table 1) related to the Co atom are comparable with those observed in similar cobalt complexes with octahedral geometry (De et al., 2001; Sun, 2005; Zhu et al., 2003; Yuan, 2006). In the crystal structure, the adjacent molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2).

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg), 2-(2-aminoethylamino)ethanol (0.1 mmol, 10.4 mg), and cobalt acetate tetrahydrate (0.1 mmol, 24.9 mg) were mixed and stirred in methanol (20 ml) at reflux for 2 h, to give a red solution. The solution was cooled to room temperature, and red block-shaped single crystals were formed by slow evaporation of the solution in air. The characteristic IR absorption for the hydroxy group is at 3327 cm-1.

Refinement

Atom H2 attached to O2 was located in a difference Fourier map and refined isotropically, with the O–H distance restrained to 0.85 (1) Å. The remaining H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The C8 atom is disordered over two distinct sites, with occupancies of 0.638 (3) and 0.362 (3).

Figures

Fig. 1.
The molecular structure of the title complex with 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title complex, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Co(C9H8ClNO2)(C9H9ClNO2)]Dx = 1.632 Mg m3
Mr = 455.17Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 2130 reflections
Hall symbol: -R 3θ = 2.5–24.5°
a = 18.675 (2) ŵ = 1.24 mm1
c = 27.595 (3) ÅT = 298 K
V = 8334.6 (16) Å3Block, red
Z = 180.32 × 0.30 × 0.27 mm
F(000) = 4176

Data collection

Bruker APEXII CCD area-detector diffractometer4045 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
graphiteRint = 0.126
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −19→22
Tmin = 0.692, Tmax = 0.730k = −23→23
13818 measured reflectionsl = −35→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0437P)2] where P = (Fo2 + 2Fc2)/3
4045 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.40 e Å3
9 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.55643 (3)0.59070 (3)0.127819 (16)0.04116 (18)
Cl10.98997 (7)0.87669 (9)0.09447 (5)0.0861 (4)
Cl20.41025 (9)0.19824 (7)0.01276 (5)0.0928 (5)
N10.63370 (19)0.63087 (18)0.17903 (10)0.0430 (7)
N20.47432 (18)0.5496 (2)0.07872 (10)0.0453 (8)
O10.63160 (15)0.65983 (16)0.08074 (9)0.0539 (7)
O20.47877 (16)0.51745 (17)0.17488 (9)0.0503 (7)
O30.58854 (15)0.51130 (16)0.11779 (8)0.0514 (7)
C10.7546 (2)0.7142 (2)0.12998 (13)0.0433 (9)
C20.7114 (2)0.7059 (2)0.08620 (13)0.0455 (9)
C30.7592 (2)0.7521 (3)0.04638 (14)0.0538 (10)
H30.73270.74760.01710.065*
C40.8429 (2)0.8033 (2)0.04895 (15)0.0536 (10)
H40.87230.83380.02200.064*
C50.8833 (2)0.8092 (2)0.09172 (16)0.0540 (11)
C60.8408 (2)0.7664 (2)0.13157 (14)0.0505 (10)
H60.86910.77160.16030.061*
C70.7118 (2)0.6768 (2)0.17474 (13)0.0436 (9)
H70.74370.68710.20250.052*
C80.5941 (3)0.5974 (2)0.22574 (12)0.0543 (10)
H8A0.57560.63280.24020.065*
H8B0.63260.59390.24780.065*
C90.5219 (3)0.5132 (3)0.21629 (14)0.0587 (11)
H9A0.54100.47420.21060.070*
H9B0.48540.49450.24420.070*
C100.4806 (2)0.4271 (2)0.06097 (12)0.0459 (9)
C110.5442 (2)0.4424 (2)0.09464 (13)0.0446 (9)
C120.5605 (3)0.3772 (3)0.10272 (14)0.0549 (11)
H120.59990.38410.12570.066*
C130.5200 (3)0.3042 (3)0.07785 (15)0.0608 (11)
H130.53240.26260.08380.073*
C140.4608 (3)0.2926 (2)0.04396 (14)0.0575 (11)
C150.4415 (2)0.3523 (2)0.03509 (13)0.0518 (10)
H150.40220.34380.01170.062*
C160.4515 (2)0.4846 (2)0.05371 (13)0.0458 (9)
H160.41340.47350.02900.055*
O40.52234 (16)0.67011 (15)0.14056 (9)0.0524 (7)0.638 (18)
C170.4410 (3)0.6051 (3)0.07147 (16)0.0722 (14)0.638 (18)
H17A0.38360.57340.06150.087*0.638 (18)
H17B0.47170.64460.04600.087*0.638 (18)
C180.4473 (6)0.6495 (6)0.1169 (4)0.061 (3)0.638 (18)
H18A0.44550.69940.10980.073*0.638 (18)
H18B0.40100.61480.13780.073*0.638 (18)
O4'0.52234 (16)0.67011 (15)0.14056 (9)0.0524 (7)0.362 (18)
C17'0.4410 (3)0.6051 (3)0.07147 (16)0.0722 (14)0.362 (18)
H17C0.44070.61630.03720.087*0.362 (18)
H17D0.38440.57870.08310.087*0.362 (18)
C18'0.4876 (12)0.6776 (8)0.0957 (6)0.062 (5)0.362 (18)
H18C0.45360.70220.10240.074*0.362 (18)
H18D0.53240.71530.07470.074*0.362 (18)
H20.4293 (12)0.507 (3)0.1794 (16)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0373 (3)0.0420 (3)0.0389 (3)0.0159 (3)−0.0011 (2)−0.0015 (2)
Cl10.0381 (7)0.0883 (10)0.1121 (10)0.0166 (6)0.0011 (6)0.0099 (8)
Cl20.1280 (12)0.0464 (7)0.0801 (8)0.0257 (7)−0.0243 (8)−0.0136 (6)
N10.046 (2)0.0418 (18)0.0354 (16)0.0175 (16)−0.0015 (14)−0.0045 (13)
N20.0376 (18)0.055 (2)0.0399 (17)0.0202 (16)−0.0004 (13)−0.0005 (15)
O10.0357 (16)0.0643 (18)0.0447 (14)0.0121 (14)−0.0010 (11)0.0086 (13)
O20.0366 (15)0.0582 (17)0.0497 (15)0.0188 (14)0.0006 (12)0.0096 (12)
O30.0427 (16)0.0563 (18)0.0551 (15)0.0246 (14)−0.0131 (12)−0.0166 (13)
C10.043 (2)0.040 (2)0.046 (2)0.0194 (19)−0.0029 (17)−0.0037 (16)
C20.039 (2)0.048 (2)0.048 (2)0.021 (2)0.0018 (17)−0.0018 (17)
C30.047 (3)0.062 (3)0.049 (2)0.025 (2)0.0038 (18)0.0041 (19)
C40.040 (2)0.054 (3)0.062 (3)0.019 (2)0.0103 (19)0.009 (2)
C50.033 (2)0.047 (2)0.077 (3)0.017 (2)0.004 (2)0.000 (2)
C60.044 (2)0.055 (3)0.058 (2)0.029 (2)−0.0064 (19)−0.009 (2)
C70.047 (3)0.043 (2)0.042 (2)0.024 (2)−0.0092 (17)−0.0067 (16)
C80.062 (3)0.052 (3)0.035 (2)0.018 (2)0.0011 (18)−0.0012 (17)
C90.055 (3)0.065 (3)0.048 (2)0.024 (2)−0.0023 (19)0.011 (2)
C100.045 (2)0.047 (2)0.036 (2)0.016 (2)0.0040 (17)0.0027 (17)
C110.039 (2)0.048 (2)0.041 (2)0.0180 (19)0.0028 (16)−0.0037 (17)
C120.056 (3)0.061 (3)0.050 (2)0.032 (2)−0.0057 (19)−0.005 (2)
C130.075 (3)0.055 (3)0.057 (3)0.036 (3)0.003 (2)0.002 (2)
C140.072 (3)0.044 (2)0.045 (2)0.020 (2)0.004 (2)0.0004 (18)
C150.051 (3)0.045 (2)0.043 (2)0.012 (2)−0.0058 (17)−0.0031 (18)
C160.034 (2)0.052 (3)0.0365 (19)0.0104 (19)0.0005 (15)0.0010 (18)
O40.0542 (17)0.0457 (17)0.0576 (16)0.0252 (14)−0.0065 (13)−0.0045 (12)
C170.080 (3)0.102 (4)0.065 (3)0.067 (3)−0.009 (2)−0.008 (3)
C180.047 (5)0.064 (6)0.080 (6)0.034 (5)−0.002 (4)0.003 (4)
O4'0.0542 (17)0.0457 (17)0.0576 (16)0.0252 (14)−0.0065 (13)−0.0045 (12)
C17'0.080 (3)0.102 (4)0.065 (3)0.067 (3)−0.009 (2)−0.008 (3)
C18'0.063 (9)0.051 (7)0.073 (8)0.030 (6)−0.006 (6)−0.001 (6)

Geometric parameters (Å, °)

Co1—O11.874 (2)C7—H70.9300
Co1—O31.877 (3)C8—C91.496 (5)
Co1—N11.887 (3)C8—H8A0.9700
Co1—N21.897 (3)C8—H8B0.9700
Co1—O41.916 (3)C9—H9A0.9700
Co1—O21.918 (3)C9—H9B0.9700
Cl1—C51.747 (4)C10—C151.405 (5)
Cl2—C141.753 (4)C10—C111.420 (5)
N1—C71.275 (4)C10—C161.440 (5)
N1—C81.462 (4)C11—C121.413 (5)
N2—C161.270 (4)C12—C131.367 (5)
N2—C171.465 (5)C12—H120.9300
O1—C21.305 (4)C13—C141.380 (6)
O2—C91.423 (4)C13—H130.9300
O2—H20.855 (10)C14—C151.356 (6)
O3—C111.298 (4)C15—H150.9300
C1—C61.404 (5)C16—H160.9300
C1—C21.418 (5)O4—C181.414 (7)
C1—C71.447 (5)C17—C181.474 (8)
C2—C31.406 (5)C17—H17A0.9700
C3—C41.368 (5)C17—H17B0.9700
C3—H30.9300C18—H18A0.9700
C4—C51.375 (5)C18—H18B0.9700
C4—H40.9300C18'—H18C0.9700
C5—C61.359 (5)C18'—H18D0.9700
C6—H60.9300
O1—Co1—O390.97 (12)N1—C8—C9107.0 (3)
O1—Co1—N194.87 (12)N1—C8—H8A110.3
O3—Co1—N186.66 (12)C9—C8—H8A110.3
O1—Co1—N287.65 (12)N1—C8—H8B110.3
O3—Co1—N295.06 (12)C9—C8—H8B110.3
N1—Co1—N2176.94 (12)H8A—C8—H8B108.6
O1—Co1—O491.05 (11)O2—C9—C8108.6 (3)
O3—Co1—O4177.77 (11)O2—C9—H9A110.0
N1—Co1—O492.22 (12)C8—C9—H9A110.0
N2—Co1—O485.98 (12)O2—C9—H9B110.0
O1—Co1—O2178.46 (12)C8—C9—H9B110.0
O3—Co1—O287.87 (12)H9A—C9—H9B108.4
N1—Co1—O286.08 (12)C15—C10—C11119.9 (4)
N2—Co1—O291.44 (12)C15—C10—C16118.0 (4)
O4—Co1—O290.13 (12)C11—C10—C16122.0 (3)
C7—N1—C8122.3 (3)O3—C11—C12118.1 (3)
C7—N1—Co1126.0 (2)O3—C11—C10125.2 (4)
C8—N1—Co1111.5 (2)C12—C11—C10116.7 (3)
C16—N2—C17122.9 (3)C13—C12—C11122.0 (4)
C16—N2—Co1126.3 (3)C13—C12—H12119.0
C17—N2—Co1110.8 (3)C11—C12—H12119.0
C2—O1—Co1126.1 (2)C12—C13—C14119.9 (4)
C9—O2—Co1109.7 (2)C12—C13—H13120.1
C9—O2—H2117 (3)C14—C13—H13120.1
Co1—O2—H2127 (3)C15—C14—C13120.9 (4)
C11—O3—Co1123.9 (2)C15—C14—Cl2120.5 (3)
C6—C1—C2119.6 (3)C13—C14—Cl2118.6 (4)
C6—C1—C7118.2 (3)C14—C15—C10120.5 (4)
C2—C1—C7121.8 (3)C14—C15—H15119.8
O1—C2—C3118.6 (3)C10—C15—H15119.8
O1—C2—C1124.8 (3)N2—C16—C10124.5 (3)
C3—C2—C1116.6 (3)N2—C16—H16117.8
C4—C3—C2122.7 (4)C10—C16—H16117.8
C4—C3—H3118.6C18—O4—Co1111.8 (3)
C2—C3—H3118.6N2—C17—C18109.8 (4)
C3—C4—C5119.4 (4)N2—C17—H17A109.7
C3—C4—H4120.3C18—C17—H17A109.7
C5—C4—H4120.3N2—C17—H17B109.7
C6—C5—C4120.8 (4)C18—C17—H17B109.7
C6—C5—Cl1120.6 (3)H17A—C17—H17B108.2
C4—C5—Cl1118.5 (3)O4—C18—C17109.6 (5)
C5—C6—C1120.9 (4)O4—C18—H18A109.7
C5—C6—H6119.6C17—C18—H18A109.7
C1—C6—H6119.6O4—C18—H18B109.7
N1—C7—C1125.1 (3)C17—C18—H18B109.7
N1—C7—H7117.5H18A—C18—H18B108.2
C1—C7—H7117.5H18C—C18'—H18D107.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.86 (1)1.59 (1)2.436 (4)173 (5)

Symmetry codes: (i) y−1/3, −x+y+1/3, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2699).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • De, R. L., Samanta, K., Maiti, K. & Keller, E. (2001). Inorg. Chim. Acta, 316, 113–116.
  • Khalaji, A. D., Hadadzadeh, H., Fejfarova, K. & Dušek, M. (2010). Polyhedron, 29, 807–812.
  • Luo, F. & Luo, M.-B. (2010). Inorg. Chem. Commun.13, 319–321.
  • Rodriguez, L., Labisbal, E., Sousa-Pedrares, A., Garcia-Vazquez, J. A., Romero, J. & Sousa, A. (2010). Inorg. Chim. Acta, 363, 1284–1288.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, Y.-X. (2005). Acta Cryst. E61, m335–m337.
  • Yuan, C.-L. (2006). Acta Cryst. E62, m2257–m2259.
  • Zhang, J.-S., Pan, F.-D., Cheng, H. & Du, W.-J. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem.40, 211–215.
  • Zhu, H.-L., Lin, Y.-S., Meng, F.-J., Zou, Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m878–m879.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography