PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2422.
Published online 2010 August 28. doi:  10.1107/S1600536810033738
PMCID: PMC3008048

2-Bromo-4-chloro-6-{(E)-[4-(diethyl­amino)­phen­yl]imino­meth­yl}phenol

Abstract

In the title compound, C17H18BrClN2O, the dihedral angle between the aromatic rings is 3.0 (1)°. The methyl­ethanamine group assumes an extended conformation. An intra­molecular O—H(...)N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H(...)π and π–π [centroid–centroid distances = 3.691 (1) and 3.632 (1) Å] inter­actions.

Related literature

For Schiff base compounds in coordination chemistry, see: Weber et al. (2007 [triangle]); Chen et al. (2008 [triangle]) and for their role in biological processes, see: May et al. (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Raja et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2422-scheme1.jpg

Experimental

Crystal data

  • C17H18BrClN2O
  • M r = 381.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2422-efi1.jpg
  • a = 11.3427 (3) Å
  • b = 10.9204 (3) Å
  • c = 14.3869 (4) Å
  • β = 111.418 (2)°
  • V = 1658.99 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.64 mm−1
  • T = 293 K
  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.972, T max = 0.977
  • 19985 measured reflections
  • 4383 independent reflections
  • 2797 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.088
  • S = 1.00
  • 4383 reflections
  • 202 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033738/gw2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033738/gw2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KM and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

The Schiff base compounds have received considerable attention for many years, primarily due to their importance in the development of coordination chemistry related to magnetism (Weber et al., 2007), catalysis (Chen et al., 2008) and biological process (May et al., 2004). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, X-ray studies of the title compound have been carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometric parameters of the title molecule agrees well with those reported for a similar structure (Raja et al., 2008). The methylethanamine moiety assumes an extended conformation as can be seen from torsion angles C15–C14–N2–C11 of 76.5 (2)° and C17–C16–N2–C11 of -74.1 (2)°. The atoms Cl1, Br1 and O1 are deviated by -0.039 (1), 0.009 (1) and -0.040 (2)Å from the least square plane of the ring C1–C6 and also atoms N1 and N2 are deviated by 0.016 (2) and -0.029 (2)Å from the least square plane of the ring C8–C13. The dihedral angle between the aromatic rings is 3.0 (1)°, shows that both the rings(C1–C6 and C8–C13) are almost coplanar.

In addition to the van der Waals interactions, the crystal packing is stabilized by O–H···N and C–H···π hydrogen bonds (Table. 1) as well as by π–π electron interaction. The intramolecular O–H···N hydrogen bond which generates an S(6) ring motif (Fig.1) (Bernstein et al., 1995). The π–π electron interactions between the rings Cg1···Cg1 and Cg1···Cg2 at -x, 1 - y, 1 - z and -x, -y, 1 - z with the centroid–centroid distance equal to 3.691 (1) and 3.632 (1) Å, respectively are observed in the crystal structure [Cg1 and Cg2 are the centroids of the rings C1–C6 and C8–C13].

Experimental

An ethanoic solution (20 ml) N,N-Diethyl aniline (10 mmol) was magnetically stirred in a round bottom flask followed by dropwise addition of Bromo- Chloro Salicylaldehyde (10 mmol). The reaction mixture was then refluxed for three hours and upon cooling to 0°C an red crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl2. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All the H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with UisoH=1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids. The intramolecular O–H···N interaction is shown as dashed lines
Fig. 2.
The packing diagram of the title compound, view along the a axis.

Crystal data

C17H18BrClN2OF(000) = 776
Mr = 381.69Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4383 reflections
a = 11.3427 (3) Åθ = 1.9–28.9°
b = 10.9204 (3) ŵ = 2.64 mm1
c = 14.3869 (4) ÅT = 293 K
β = 111.418 (2)°Block, colourless
V = 1658.99 (8) Å30.21 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer4383 independent reflections
Radiation source: fine-focus sealed tube2797 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 28.9°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→15
Tmin = 0.972, Tmax = 0.977k = −14→14
19985 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3262P] where P = (Fo2 + 2Fc2)/3
4383 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.10155 (19)0.32018 (18)0.54970 (15)0.0458 (5)
H1−0.10230.29230.61060.055*
C2−0.17812 (19)0.41572 (19)0.50175 (15)0.0443 (5)
C3−0.17718 (19)0.45989 (18)0.41258 (15)0.0456 (5)
H3−0.22850.52560.38120.055*
C4−0.09947 (18)0.40567 (19)0.37050 (14)0.0434 (5)
C5−0.02201 (17)0.30769 (18)0.41549 (14)0.0412 (4)
C6−0.02323 (17)0.26536 (17)0.50738 (14)0.0398 (4)
C70.05636 (18)0.16390 (18)0.55862 (15)0.0450 (5)
H70.05440.13820.61970.054*
C80.20773 (17)0.01035 (17)0.57157 (15)0.0393 (4)
C90.28861 (19)−0.03587 (18)0.52790 (14)0.0443 (5)
H90.2875−0.00190.46830.053*
C100.37053 (19)−0.13055 (19)0.56995 (14)0.0457 (5)
H100.4238−0.15890.53850.055*
C110.37521 (17)−0.18518 (17)0.65933 (14)0.0393 (4)
C120.29288 (18)−0.13766 (18)0.70294 (15)0.0446 (5)
H120.2933−0.17120.76250.054*
C130.21127 (18)−0.04266 (18)0.66006 (16)0.0441 (5)
H130.1577−0.01360.69100.053*
C140.5476 (2)−0.3221 (2)0.66057 (16)0.0530 (5)
H14A0.5074−0.32630.58850.064*
H14B0.5745−0.40420.68460.064*
C150.6624 (2)−0.2420 (3)0.6864 (2)0.0701 (7)
H15A0.6367−0.15910.66720.105*
H15B0.7150−0.27010.65150.105*
H15C0.7091−0.24540.75700.105*
C160.4686 (2)−0.3271 (2)0.79959 (16)0.0576 (6)
H16A0.5081−0.40720.80840.069*
H16B0.3851−0.33730.80260.069*
C170.5454 (2)−0.2467 (3)0.88435 (17)0.0756 (8)
H17A0.6295−0.23860.88400.113*
H17B0.5494−0.28260.94630.113*
H17C0.5066−0.16740.87710.113*
N10.12906 (14)0.10877 (15)0.52225 (12)0.0432 (4)
N20.45430 (15)−0.28149 (15)0.70127 (12)0.0462 (4)
Cl1−0.27823 (7)0.48188 (6)0.55421 (5)0.07030 (19)
Br1−0.09834 (3)0.46511 (3)0.248320 (18)0.07298 (12)
O10.04963 (14)0.25578 (15)0.37088 (11)0.0584 (4)
H1A0.09420.20280.40740.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0515 (12)0.0407 (11)0.0471 (11)−0.0004 (9)0.0205 (9)0.0027 (9)
C20.0473 (11)0.0392 (11)0.0513 (12)0.0029 (9)0.0238 (9)−0.0033 (9)
C30.0467 (11)0.0368 (11)0.0504 (12)0.0064 (9)0.0144 (9)0.0023 (9)
C40.0454 (11)0.0435 (12)0.0404 (10)0.0014 (9)0.0146 (9)0.0028 (9)
C50.0361 (10)0.0411 (11)0.0455 (11)−0.0008 (8)0.0137 (8)−0.0042 (9)
C60.0382 (10)0.0325 (10)0.0465 (11)−0.0027 (8)0.0127 (8)0.0002 (9)
C70.0430 (11)0.0403 (11)0.0498 (11)0.0003 (9)0.0146 (9)0.0063 (9)
C80.0317 (9)0.0362 (10)0.0446 (10)−0.0018 (8)0.0073 (8)−0.0015 (8)
C90.0468 (11)0.0466 (12)0.0365 (9)0.0018 (9)0.0118 (8)0.0019 (9)
C100.0487 (11)0.0493 (13)0.0397 (10)0.0092 (9)0.0166 (9)−0.0005 (9)
C110.0366 (10)0.0368 (10)0.0398 (10)0.0008 (8)0.0082 (8)−0.0027 (8)
C120.0438 (11)0.0461 (12)0.0444 (10)0.0017 (9)0.0167 (9)0.0060 (9)
C130.0384 (10)0.0451 (12)0.0515 (11)0.0040 (9)0.0195 (9)0.0028 (10)
C140.0579 (13)0.0475 (13)0.0525 (12)0.0171 (10)0.0189 (10)0.0001 (10)
C150.0561 (14)0.0846 (19)0.0759 (16)0.0073 (13)0.0316 (13)−0.0034 (15)
C160.0572 (14)0.0560 (14)0.0612 (14)0.0143 (11)0.0236 (11)0.0179 (12)
C170.0747 (17)0.103 (2)0.0468 (13)0.0149 (16)0.0191 (12)0.0031 (14)
N10.0349 (8)0.0399 (9)0.0490 (9)0.0008 (7)0.0085 (7)0.0018 (8)
N20.0459 (9)0.0451 (10)0.0462 (9)0.0102 (8)0.0152 (8)0.0054 (8)
Cl10.0855 (4)0.0679 (4)0.0736 (4)0.0250 (3)0.0482 (4)0.0040 (3)
Br10.0821 (2)0.0911 (2)0.05317 (15)0.02883 (15)0.03355 (13)0.02548 (13)
O10.0581 (9)0.0646 (11)0.0610 (9)0.0203 (8)0.0318 (8)0.0094 (8)

Geometric parameters (Å, °)

C1—C21.372 (3)C11—N21.371 (2)
C1—C61.383 (3)C11—C121.401 (3)
C1—H10.9300C12—C131.377 (3)
C2—C31.374 (3)C12—H120.9300
C2—Cl11.734 (2)C13—H130.9300
C3—C41.373 (3)C14—N21.453 (3)
C3—H30.9300C14—C151.499 (3)
C4—C51.386 (3)C14—H14A0.9700
C4—Br11.878 (2)C14—H14B0.9700
C5—O11.332 (2)C15—H15A0.9600
C5—C61.405 (3)C15—H15B0.9600
C6—C71.449 (3)C15—H15C0.9600
C7—N11.277 (3)C16—N21.452 (3)
C7—H70.9300C16—C171.497 (3)
C8—C91.383 (3)C16—H16A0.9700
C8—C131.386 (3)C16—H16B0.9700
C8—N11.412 (2)C17—H17A0.9600
C9—C101.374 (3)C17—H17B0.9600
C9—H90.9300C17—H17C0.9600
C10—C111.401 (3)O1—H1A0.8200
C10—H100.9300
C2—C1—C6119.89 (19)C13—C12—H12119.1
C2—C1—H1120.1C11—C12—H12119.1
C6—C1—H1120.1C12—C13—C8121.03 (19)
C1—C2—C3121.14 (19)C12—C13—H13119.5
C1—C2—Cl1119.54 (16)C8—C13—H13119.5
C3—C2—Cl1119.32 (16)N2—C14—C15114.65 (19)
C4—C3—C2119.05 (18)N2—C14—H14A108.6
C4—C3—H3120.5C15—C14—H14A108.6
C2—C3—H3120.5N2—C14—H14B108.6
C3—C4—C5121.78 (19)C15—C14—H14B108.6
C3—C4—Br1119.25 (15)H14A—C14—H14B107.6
C5—C4—Br1118.96 (15)C14—C15—H15A109.5
O1—C5—C4119.85 (18)C14—C15—H15B109.5
O1—C5—C6122.04 (17)H15A—C15—H15B109.5
C4—C5—C6118.11 (18)C14—C15—H15C109.5
C1—C6—C5120.02 (18)H15A—C15—H15C109.5
C1—C6—C7119.20 (18)H15B—C15—H15C109.5
C5—C6—C7120.78 (18)N2—C16—C17114.7 (2)
N1—C7—C6121.83 (19)N2—C16—H16A108.6
N1—C7—H7119.1C17—C16—H16A108.6
C6—C7—H7119.1N2—C16—H16B108.6
C9—C8—C13117.61 (18)C17—C16—H16B108.6
C9—C8—N1116.88 (18)H16A—C16—H16B107.6
C13—C8—N1125.51 (19)C16—C17—H17A109.5
C10—C9—C8121.93 (19)C16—C17—H17B109.5
C10—C9—H9119.0H17A—C17—H17B109.5
C8—C9—H9119.0C16—C17—H17C109.5
C9—C10—C11121.17 (19)H17A—C17—H17C109.5
C9—C10—H10119.4H17B—C17—H17C109.5
C11—C10—H10119.4C7—N1—C8122.49 (18)
N2—C11—C12121.54 (18)C11—N2—C16120.96 (17)
N2—C11—C10122.01 (18)C11—N2—C14120.81 (17)
C12—C11—C10116.44 (17)C16—N2—C14116.70 (16)
C13—C12—C11121.82 (19)C5—O1—H1A109.5
C6—C1—C2—C3−1.1 (3)C8—C9—C10—C110.3 (3)
C6—C1—C2—Cl1178.74 (15)C9—C10—C11—N2178.53 (18)
C1—C2—C3—C41.0 (3)C9—C10—C11—C12−0.3 (3)
Cl1—C2—C3—C4−178.80 (15)N2—C11—C12—C13−178.59 (18)
C2—C3—C4—C50.0 (3)C10—C11—C12—C130.3 (3)
C2—C3—C4—Br1179.70 (15)C11—C12—C13—C8−0.2 (3)
C3—C4—C5—O1178.33 (19)C9—C8—C13—C120.2 (3)
Br1—C4—C5—O1−1.4 (3)N1—C8—C13—C12−179.17 (18)
C3—C4—C5—C6−0.9 (3)C6—C7—N1—C8179.57 (17)
Br1—C4—C5—C6179.36 (14)C9—C8—N1—C7−175.52 (18)
C2—C1—C6—C50.1 (3)C13—C8—N1—C73.9 (3)
C2—C1—C6—C7−179.53 (18)C12—C11—N2—C16−8.6 (3)
O1—C5—C6—C1−178.37 (18)C10—C11—N2—C16172.58 (19)
C4—C5—C6—C10.9 (3)C12—C11—N2—C14−174.04 (18)
O1—C5—C6—C71.3 (3)C10—C11—N2—C147.2 (3)
C4—C5—C6—C7−179.49 (18)C17—C16—N2—C11−74.1 (2)
C1—C6—C7—N1178.95 (18)C17—C16—N2—C1491.9 (2)
C5—C6—C7—N1−0.7 (3)C15—C14—N2—C1176.5 (2)
C13—C8—C9—C10−0.3 (3)C15—C14—N2—C16−89.5 (2)
N1—C8—C9—C10179.17 (18)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.588 (2)147
C16—H16A···Cg2i0.962.903.814 (2)157

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2086).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Raja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography