PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1080–m1081.
Published online 2010 August 11. doi:  10.1107/S1600536810031211
PMCID: PMC3008047

3,3-Dimethyl-1,1-(propane-1,3-di­yl)diimidazol-1-ium tetra­bromido­cadmate(II)

Abstract

The title compound, (C11H18N4)[CdBr4], was prepared by an anion exchange. The dihedral angle between the two planar imidazolium rings in the cation is 74.4 (4)°. The crystal packing is stabilized by weak inter­molecular C—H(...)Br hydrogen bonds between the cation and the tetrahedral anion, building up a three-dimensionnal network.

Related literature

For the properties and applications of ionic liquids, see: Welton (1999 [triangle]); Nicholas et al. (2004 [triangle]); Yu et al. (2007 [triangle]). For dicationic ionic liquids, see: Jared et al. (2005 [triangle]); Liang et al. (2008 [triangle]); Song et al. (2009 [triangle]); Geng et al. (2010 [triangle]). For related structures, see: Jared et al. (2005 [triangle]); Liang et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1080-scheme1.jpg

Experimental

Crystal data

  • (C11H18N4)[CdBr4]
  • M r = 638.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1080-efi5.jpg
  • a = 8.5050 (17) Å
  • b = 15.876 (3) Å
  • c = 13.836 (3) Å
  • β = 96.07 (3)°
  • V = 1857.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.78 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.245, T max = 0.442
  • 3383 measured reflections
  • 3383 independent reflections
  • 1874 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.144
  • S = 0.95
  • 3383 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031211/dn2593sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031211/dn2593Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation for Young Teachers Scholarship of Nanjing University of Technology, Jiangsu, China (grant No. 39729005). The authors also thank the Centre of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

Ionic liquids (ILs) are generally formed by an organic cation and a weakly coordinating anion. They have enjoyed considerable research interests in recent years because of their unique properties such as high thermal stability, non-volatility, non-flammability, high ionic conductivity, wide electrochemical window and miscibility with organic compounds (Welton, 1999; Nicholas et al., 2004; Yu et al., 2007). Geminal dicationic ionic liquids have been shown to possess superior physical properties in terms of thermal stability and volatility compared to traditional ionic liquids (ILs) (Jared et al., 2005; Liang et al., 2008; Song et al., 2009). As part of our ongoing studies on new Geminal dicationic ionic liquids (Geng et al., 2010), we report here the crystal structure of the title compound (I).

In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The two imidazolium rings are of course planar but make a dihedral angle of 74.4 (4)° which is much larger than the values reported for related compound as C11H18N4.Br2, 21.5° (Jared et al., 2005) or C11H18N4.2PF6 ,6.1 (2)°(Liang et al., 2008). The dication of the title structure has a highly twisted conformation with the two imidazolium rings almost perpendicular to the C3 plane (angles of C5C6C7-N2C4N1C2C3 and C5C6C7-C8C9N4C10N3 are 79.4 (8)° and 86.1 (6)°, respectively), which are significantly lower than those observed in C11H18N4.Br2 (106.8 (7)° and 92.6 (6)°, respectively) (Jared et al., 2005).

Weak intermolecular C—H···Br hydrogen bonds between tetrabromide cadmium anions and imidazolium cations build up a three dimensionnal network. (Table 1, Fig.2).

Experimental

A solution of 1,3-dibromide propane(10.1 g, 0.05 mol) in methanol(30 ml) was slowly added to a solution of 1-methylimidazole(9.4 g, 0.11 mol) in methanol(30 ml) at room temperature. The reaction mixture was then refluxed for 6 h. After evaporation of the solvent, the residue was washed with diethyl ether and dichloromethane, then dried in vacuum to obtain ionic liquid 3,3-dimethyl-1,1-(propane-1,3-diyl)- diimidazol-1-ium dibromide (a white solid ionic liquid).

A solution of above mentioned dibromide ionic liquid (3.66 g, 0.01 mol) in methanol(20 ml) was slowly added to a methanol solution of cadmium dibromide (3.44 g, 0.02 mol). The reaction mixture was stirred at room temperature for 3 h. After evaporation of the solvent, the residue was washed with methanol, then dried in vacuum to obtain title compound (I), 3,3-dimethyl-1,1-(propane-1,3-diyl)- diimidazol-1-ium tetrabromide cadmium(II)(yield 84%). M.p. 452–454 K.

Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 8.82 (s, 2 H), 7.49 (d, 4 H), 4.37 (t, 4 H), 3.93 (s,6 H), 2.57 (t, 4 H).

Refinement

All H atoms attached to C atoms fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
A view of the molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing view showing the C-H···Br Hydrogen bonding pattern. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes : (i) -x+1, -y, -z+1; (ii) -x+1, ...

Crystal data

(C11H18N4)[CdBr4]F(000) = 1200
Mr = 638.33Dx = 2.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.5050 (17) Åθ = 9–13°
b = 15.876 (3) ŵ = 9.78 mm1
c = 13.836 (3) ÅT = 293 K
β = 96.07 (3)°Block, white
V = 1857.7 (6) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = −10→10
Absorption correction: ψ scan (North et al., 1968)k = 0→19
Tmin = 0.245, Tmax = 0.442l = 0→16
3383 measured reflections3 standard reflections every 200 reflections
3383 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.77 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2634 (10)0.0761 (6)0.4518 (6)0.045 (2)
N20.2576 (10)0.2095 (6)0.4221 (7)0.052 (2)
N30.5789 (10)0.3667 (6)0.6079 (7)0.060 (3)
N40.8099 (10)0.3936 (6)0.6694 (6)0.047 (2)
C10.2360 (16)−0.0015 (9)0.4950 (10)0.095 (5)
H1A0.21160.00750.56040.142*
H1B0.3289−0.03600.49590.142*
H1C0.1488−0.02930.45840.142*
C20.3518 (14)0.0926 (9)0.3730 (9)0.066 (4)
H2A0.40380.05190.34000.079*
C30.3505 (13)0.1739 (8)0.3527 (9)0.064 (4)
H3A0.39890.20140.30450.076*
C40.2128 (11)0.1516 (8)0.4794 (8)0.050 (3)
H4A0.15450.16090.53150.060*
C50.2341 (14)0.3012 (8)0.4287 (9)0.068 (4)
H5A0.15150.31210.47040.081*
H5B0.19830.32280.36460.081*
C60.3818 (15)0.3485 (8)0.4682 (9)0.074 (4)
H6A0.46810.33490.43040.089*
H6B0.36300.40870.46370.089*
C70.4240 (18)0.3240 (9)0.5717 (11)0.096 (5)
H7A0.43520.26340.57700.115*
H7B0.34140.34160.61060.115*
C80.5739 (14)0.4410 (8)0.6537 (8)0.057 (3)
H8A0.48330.47290.65830.068*
C90.7154 (16)0.4612 (8)0.6906 (9)0.067 (4)
H9A0.74680.51030.72400.080*
C100.7192 (13)0.3354 (8)0.6172 (8)0.055 (3)
H10A0.75150.28420.59340.065*
C110.9894 (14)0.3870 (10)0.7007 (12)0.107 (6)
H11A1.02610.43840.73200.160*
H11B1.04420.37780.64440.160*
H11C1.00940.34080.74500.160*
Cd10.77770 (8)0.15445 (5)0.80145 (6)0.0423 (2)
Br10.79089 (15)0.29343 (8)0.89683 (10)0.0652 (4)
Br20.50899 (14)0.13451 (8)0.69780 (10)0.0643 (4)
Br31.00029 (15)0.14239 (11)0.69122 (10)0.0832 (5)
Br40.8109 (2)0.04053 (11)0.92709 (13)0.1013 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.048 (6)0.046 (6)0.043 (5)−0.003 (5)0.011 (4)−0.003 (4)
N20.040 (6)0.056 (6)0.061 (6)0.011 (5)0.004 (5)−0.009 (5)
N30.046 (6)0.034 (6)0.092 (8)−0.013 (4)−0.031 (5)0.002 (5)
N40.044 (5)0.057 (6)0.042 (5)−0.002 (5)0.010 (4)0.021 (5)
C10.097 (11)0.091 (11)0.094 (11)−0.056 (9)0.004 (9)0.006 (10)
C20.062 (9)0.070 (9)0.070 (9)−0.008 (7)0.029 (7)−0.016 (7)
C30.054 (8)0.077 (10)0.063 (8)−0.019 (7)0.020 (6)−0.018 (7)
C40.031 (6)0.081 (9)0.037 (6)0.006 (6)0.005 (5)−0.009 (7)
C50.064 (9)0.077 (10)0.055 (8)−0.001 (7)−0.027 (6)0.004 (7)
C60.094 (10)0.073 (9)0.056 (8)0.005 (8)0.009 (7)0.000 (8)
C70.122 (14)0.065 (10)0.099 (12)−0.021 (9)0.005 (10)−0.013 (8)
C80.054 (8)0.062 (9)0.052 (7)0.002 (6)−0.001 (6)−0.003 (6)
C90.103 (11)0.043 (7)0.052 (7)0.010 (8)0.004 (7)−0.009 (6)
C100.045 (7)0.061 (8)0.057 (7)−0.006 (6)0.001 (6)0.015 (6)
C110.053 (9)0.080 (11)0.183 (18)−0.017 (8)−0.009 (10)0.034 (11)
Cd10.0313 (4)0.0491 (5)0.0475 (5)−0.0006 (4)0.0080 (3)−0.0051 (4)
Br10.0724 (9)0.0536 (8)0.0706 (9)−0.0055 (6)0.0119 (7)−0.0081 (6)
Br20.0457 (7)0.0684 (9)0.0760 (9)−0.0047 (6)−0.0061 (6)−0.0025 (7)
Br30.0583 (8)0.1260 (14)0.0684 (9)0.0112 (9)0.0214 (7)−0.0020 (9)
Br40.1088 (13)0.0956 (12)0.1011 (12)0.0178 (10)0.0180 (10)0.0049 (10)

Geometric parameters (Å, °)

N1—C41.342 (13)C5—C61.514 (16)
N1—C11.400 (15)C5—H5A0.9700
N1—C21.412 (13)C5—H5B0.9700
N2—C41.297 (13)C6—C71.490 (17)
N2—C31.423 (14)C6—H6A0.9700
N2—C51.475 (15)C6—H6B0.9700
N3—C101.286 (13)C7—H7A0.9700
N3—C81.341 (14)C7—H7B0.9700
N3—C71.519 (15)C8—C91.297 (15)
N4—C101.362 (13)C8—H8A0.9300
N4—C91.391 (13)C9—H9A0.9300
N4—C111.545 (14)C10—H10A0.9300
C1—H1A0.9600C11—H11A0.9600
C1—H1B0.9600C11—H11B0.9600
C1—H1C0.9600C11—H11C0.9600
C2—C31.321 (17)Cd1—Br42.5036 (19)
C2—H2A0.9300Cd1—Br32.5608 (16)
C3—H3A0.9300Cd1—Br12.5673 (15)
C4—H4A0.9300Cd1—Br22.5858 (16)
C4—N1—C1126.2 (10)C7—C6—C5108.9 (11)
C4—N1—C2105.5 (9)C7—C6—H6A109.9
C1—N1—C2128.3 (11)C5—C6—H6A109.9
C4—N2—C3110.5 (10)C7—C6—H6B109.9
C4—N2—C5127.7 (11)C5—C6—H6B109.9
C3—N2—C5121.5 (11)H6A—C6—H6B108.3
C10—N3—C8111.6 (9)C6—C7—N3108.2 (11)
C10—N3—C7128.6 (11)C6—C7—H7A110.0
C8—N3—C7118.6 (11)N3—C7—H7A110.0
C10—N4—C9109.1 (10)C6—C7—H7B110.0
C10—N4—C11126.2 (11)N3—C7—H7B110.0
C9—N4—C11124.7 (12)H7A—C7—H7B108.4
N1—C1—H1A109.5C9—C8—N3109.2 (11)
N1—C1—H1B109.5C9—C8—H8A125.4
H1A—C1—H1B109.5N3—C8—H8A125.4
N1—C1—H1C109.5C8—C9—N4105.0 (11)
H1A—C1—H1C109.5C8—C9—H9A127.5
H1B—C1—H1C109.5N4—C9—H9A127.5
C3—C2—N1110.6 (11)N3—C10—N4105.0 (10)
C3—C2—H2A124.7N3—C10—H10A127.5
N1—C2—H2A124.7N4—C10—H10A127.5
C2—C3—N2103.7 (11)N4—C11—H11A109.5
C2—C3—H3A128.1N4—C11—H11B109.5
N2—C3—H3A128.1H11A—C11—H11B109.5
N2—C4—N1109.6 (9)N4—C11—H11C109.5
N2—C4—H4A125.2H11A—C11—H11C109.5
N1—C4—H4A125.2H11B—C11—H11C109.5
N2—C5—C6113.6 (10)Br4—Cd1—Br3108.87 (6)
N2—C5—H5A108.9Br4—Cd1—Br1105.57 (6)
C6—C5—H5A108.9Br3—Cd1—Br1112.06 (6)
N2—C5—H5B108.9Br4—Cd1—Br2108.95 (6)
C6—C5—H5B108.9Br3—Cd1—Br2109.04 (6)
H5A—C5—H5B107.7Br1—Cd1—Br2112.23 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···Br20.972.673.515 (15)145.
C1—H1C···Br3i0.962.933.819 (13)155.
C4—H4A···Br3ii0.932.703.606 (11)164.
C5—H5B···Br3iii0.972.843.765 (11)161.
C8—H8A···Br4iv0.932.863.699 (12)151.

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) x−1, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2593).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Geng, H., Zhuang, L., Zhang, J., Wang, G. & Yuan, A. (2010). Acta Cryst. E66, o1267. [PMC free article] [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jared, L. A., Ding, R. F., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc.127, 593–604. [PubMed]
  • Liang, J., Dong, S., Cang, H. & Wang, J. (2008). Acta Cryst. E64, o2480. [PMC free article] [PubMed]
  • Nicholas, G., Garcia, M. T. & Scammells, P. J. (2004). Green Chem.6, 166–175.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, L. C., Luo, X., Wang, Y. Z., Gai, B. & Hu, Q. M. (2009). J. Organomet. Chem.694, 103–112.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Welton, T. (1999). Chem. Rev.99, 2071–2083. [PubMed]
  • Yu, G. Q., Yan, S. Q., Zhou, F., Liu, X. Q., Liu, W. M. & Liang, Y. M. (2007). Tribol. Lett 25, 197–205

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography