PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2323–o2324.
Published online 2010 August 18. doi:  10.1107/S1600536810032290
PMCID: PMC3008044

2-Amino-5-chloro­pyridinium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

Abstract

The asymmetric unit of the title salt, C5H6ClN2 +·C7H5O6S, contains two independent 2-amino-5-chloro­pyridinium cations and two independent 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions. In both anions, the O atoms of the sulfonate group are disordered over two sets of positions, with occupancy ratios of 0.47 (5):0.53 (5) and 0.50 (8):0.50 (8). In each anion, an intra­molecular O—H(...)O hydrogen bond generating an S(6) motif is observed. In the crystal structure, the cations and anions are linked via N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds, forming a two-dimensional network parallel to (110). The structure is further stabilized by π–π inter­actions between cations and anions [centroid–centroid distance = 3.5454 (12) Å]. The crystal studied was a non-merohedral twin, with a ratio of the twin components of 0.715 (3):0.285 (3).

Related literature

For applications of inter­molecular inter­actions, see: Lam & Mak (2000 [triangle]). For sulfosalicylic acid complexes, see: Smith et al. (2004 [triangle]); Muthiah et al. (2003 [triangle]); Raj et al. (2003 [triangle]); Fan et al. (2005 [triangle]). For a related structure, see: Pourayoubi et al. (2007 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2323-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C7H5O6S
  • M r = 346.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2323-efi1.jpg
  • a = 7.9455 (3) Å
  • b = 10.9173 (5) Å
  • c = 16.3535 (7) Å
  • α = 85.223 (2)°
  • β = 83.327 (2)°
  • γ = 85.842 (2)°
  • V = 1401.22 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 296 K
  • 0.50 × 0.36 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.804, T max = 0.935
  • 8143 measured reflections
  • 8143 independent reflections
  • 5951 reflections with I > 2σ(I)
  • R int = 0.000

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.158
  • S = 1.04
  • 8143 reflections
  • 478 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032290/ci5152sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032290/ci5152Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) and its organic complexes or salts can develop well-defined non-covalent supramolecular architectures because of their ability to form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites (Smith et al., 2004; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005). The present study has been undertaken to study the hydrogen bonding patterns involving the 3-carboxy-4-hydroxybenzenesulfonate anions with the 2-amino-5-chloropyridinium cations.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.003 (2) Å for atom C8A in cation A and 0.013 (2) Å for C12B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C8A—N1A—C12A [123.3 (2)°] and C8B—N1B—C12B [123.56 (19)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths (Allen et al., 1987) and angles are normal. Each 3-carboxy-4-hydroxybenzenesulfonate anions contains an intramolecular O—H···O hydrogen bond, which generates an S(6) ring.

In the crystal structure, (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-chloropyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. The ionic units are further linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a two dimensional network parallel to the (110) plane.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (32 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H2OA, H2OB, H1OA, H1OB, H1NA and H1NB were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The O atoms in the both sulfonate anions are disordered over two sets of positions, with occupancy ratios of 0.47 (5):0.53 (5) and 0.50 (8):0.50 (8). The crystal studied was a non-merohedral twin, the refined ratio of the two components being 0.715 (3):0.285 (3); the twin matrix is [-1 0 0.111, 0 -1 0.111, 0 0 1].

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Open bonds indicate minor disordered components.
Fig. 2.
The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) network. H atoms not involved in the interactions have been omitted for clarity. Only the major component of the disordered O atoms of the sulfonate group are shown.

Crystal data

C5H6ClN2+·C7H5O6SZ = 4
Mr = 346.74F(000) = 712
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9455 (3) ÅCell parameters from 9907 reflections
b = 10.9173 (5) Åθ = 2.5–29.9°
c = 16.3535 (7) ŵ = 0.45 mm1
α = 85.223 (2)°T = 296 K
β = 83.327 (2)°Plate, yellow
γ = 85.842 (2)°0.50 × 0.36 × 0.15 mm
V = 1401.22 (10) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8143 independent reflections
Radiation source: fine-focus sealed tube5951 reflections with I > 2σ(I)
graphiteRint = 0.000
[var phi] and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.804, Tmax = 0.935k = −15→15
8143 measured reflectionsl = 0→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0866P)2 + 0.2919P] where P = (Fo2 + 2Fc2)/3
8143 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.54 e Å3
6 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S1A0.35527 (7)0.80743 (5)0.00751 (3)0.04328 (15)
O1A0.7640 (2)0.53220 (16)0.24854 (11)0.0476 (4)
O2A0.5653 (2)0.63703 (16)0.36240 (9)0.0513 (4)
O3A0.3497 (2)0.76513 (15)0.32837 (10)0.0455 (4)
O4A0.460 (2)0.837 (2)−0.0643 (13)0.072 (5)0.47 (5)
O5A0.233 (3)0.711 (3)−0.0064 (12)0.086 (4)0.47 (5)
O6A0.266 (3)0.906 (2)0.0472 (9)0.075 (4)0.47 (5)
O4X0.465 (2)0.822 (2)−0.0720 (11)0.061 (3)0.53 (5)
O5X0.2139 (10)0.7391 (10)0.0023 (6)0.045 (2)0.53 (5)
O6X0.304 (2)0.9285 (11)0.0377 (11)0.074 (3)0.53 (5)
C1A0.4393 (2)0.74515 (17)0.16239 (11)0.0312 (4)
H1AA0.34980.80040.17920.037*
C2A0.4802 (3)0.72879 (19)0.07962 (12)0.0352 (4)
C3A0.6153 (3)0.6469 (2)0.05434 (14)0.0496 (6)
H3AA0.64270.6358−0.00150.060*
C4A0.7087 (3)0.5821 (2)0.11146 (14)0.0506 (6)
H4AA0.79890.52790.09400.061*
C5A0.6684 (2)0.59768 (18)0.19527 (12)0.0352 (4)
C6A0.5314 (2)0.67910 (16)0.22106 (11)0.0291 (4)
C7A0.4856 (2)0.69252 (17)0.30980 (12)0.0327 (4)
Cl1A0.65336 (10)0.96478 (9)0.40572 (4)0.0741 (2)
N1A0.6964 (2)0.97630 (18)0.16358 (12)0.0434 (4)
N2A0.8778 (3)0.8864 (2)0.06209 (13)0.0584 (6)
H2AA0.82030.92510.02550.070*
H2AB0.96460.83830.04720.070*
C8A0.8330 (3)0.9006 (2)0.14072 (14)0.0415 (5)
C9A0.9200 (3)0.8392 (2)0.20505 (16)0.0469 (5)
H9AA1.01380.78540.19220.056*
C10A0.8675 (3)0.8583 (2)0.28486 (15)0.0460 (5)
H10A0.92590.81860.32660.055*
C11A0.7244 (3)0.9383 (2)0.30458 (14)0.0438 (5)
C12A0.6419 (3)0.9960 (2)0.24326 (15)0.0448 (5)
H12A0.54751.04940.25570.054*
S1B0.85425 (6)0.30940 (5)0.47122 (3)0.03661 (13)
O1B1.2477 (2)0.02225 (16)0.21626 (10)0.0469 (4)
O2B1.0653 (2)0.14325 (18)0.11015 (10)0.0600 (5)
O3B0.8506 (2)0.27142 (16)0.15525 (11)0.0530 (4)
O4B0.9689 (18)0.322 (2)0.5284 (9)0.078 (5)0.50 (8)
O5B0.7188 (19)0.226 (2)0.5092 (10)0.053 (3)0.50 (8)
O6B0.784 (2)0.4156 (19)0.4259 (9)0.061 (3)0.50 (8)
O4Y0.9709 (15)0.3365 (13)0.5308 (7)0.042 (3)0.50 (8)
O5Y0.7124 (15)0.2449 (19)0.5077 (10)0.041 (2)0.50 (8)
O6Y0.802 (2)0.4296 (15)0.4326 (11)0.059 (3)0.50 (8)
C1B0.9347 (2)0.24440 (17)0.31394 (12)0.0309 (4)
H1BA0.85220.30520.30030.037*
C2B0.9681 (2)0.22231 (17)0.39468 (11)0.0310 (4)
C3B1.0904 (3)0.13016 (19)0.41552 (12)0.0370 (4)
H3BA1.11140.11400.47030.044*
C4B1.1802 (3)0.06305 (19)0.35518 (13)0.0390 (4)
H4BA1.26070.00130.36950.047*
C5B1.1508 (2)0.08727 (17)0.27276 (12)0.0323 (4)
C6B1.0231 (2)0.17659 (16)0.25225 (11)0.0292 (4)
C7B0.9840 (3)0.19622 (19)0.16594 (13)0.0371 (4)
Cl1B0.81241 (10)0.51032 (8)0.86096 (4)0.0679 (2)
N1B0.7949 (2)0.52963 (17)0.62141 (11)0.0374 (4)
N2B0.6228 (3)0.6290 (2)0.53013 (13)0.0544 (5)
H2BA0.68390.59430.49050.065*
H2BB0.53710.67820.51990.065*
C8B0.6606 (3)0.60676 (19)0.60619 (13)0.0375 (4)
C9B0.5673 (3)0.6602 (2)0.67497 (15)0.0450 (5)
H9BA0.47430.71490.66710.054*
C10B0.6122 (3)0.6323 (2)0.75211 (14)0.0456 (5)
H10B0.54970.66690.79710.055*
C11B0.7538 (3)0.5506 (2)0.76350 (13)0.0402 (4)
C12B0.8428 (3)0.5010 (2)0.69775 (14)0.0397 (4)
H12B0.93700.44710.70480.048*
H2OA0.328 (4)0.768 (3)0.379 (2)0.075 (10)*
H2OB0.840 (4)0.279 (3)0.106 (2)0.062 (9)*
H1OB1.210 (4)0.046 (3)0.172 (2)0.058 (8)*
H1OA0.724 (4)0.545 (3)0.297 (2)0.069 (9)*
H1NB0.855 (3)0.496 (3)0.5796 (19)0.055 (8)*
H1NA0.644 (4)1.017 (3)0.126 (2)0.065 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.0503 (3)0.0502 (3)0.0293 (3)0.0092 (2)−0.0148 (2)0.0015 (2)
O1A0.0462 (9)0.0562 (10)0.0372 (8)0.0221 (7)−0.0100 (7)0.0004 (7)
O2A0.0643 (10)0.0587 (10)0.0276 (7)0.0213 (8)−0.0099 (7)0.0010 (7)
O3A0.0515 (9)0.0503 (9)0.0298 (7)0.0173 (7)0.0029 (6)−0.0019 (6)
O4A0.070 (7)0.085 (6)0.049 (8)0.030 (5)0.002 (5)0.027 (5)
O5A0.125 (9)0.081 (8)0.066 (6)−0.031 (6)−0.071 (6)0.024 (5)
O6A0.088 (7)0.093 (9)0.037 (3)0.063 (6)−0.017 (4)−0.007 (5)
O4X0.061 (6)0.093 (7)0.027 (3)−0.001 (5)−0.007 (3)0.011 (4)
O5X0.044 (4)0.055 (3)0.036 (2)0.002 (2)−0.015 (3)0.002 (2)
O6X0.107 (7)0.039 (3)0.078 (7)0.019 (4)−0.040 (5)−0.007 (3)
C1A0.0317 (9)0.0326 (9)0.0295 (9)0.0047 (7)−0.0072 (7)−0.0037 (7)
C2A0.0392 (10)0.0390 (10)0.0280 (9)0.0057 (8)−0.0099 (7)−0.0036 (7)
C3A0.0586 (14)0.0608 (14)0.0274 (10)0.0219 (11)−0.0074 (9)−0.0101 (9)
C4A0.0527 (13)0.0596 (14)0.0357 (11)0.0279 (11)−0.0050 (9)−0.0090 (10)
C5A0.0363 (9)0.0375 (10)0.0311 (9)0.0089 (8)−0.0075 (7)−0.0023 (8)
C6A0.0302 (8)0.0300 (9)0.0270 (8)0.0029 (7)−0.0046 (6)−0.0032 (7)
C7A0.0385 (9)0.0305 (9)0.0282 (9)0.0017 (7)−0.0036 (7)−0.0010 (7)
Cl1A0.0750 (5)0.1075 (6)0.0413 (3)0.0024 (4)−0.0094 (3)−0.0165 (4)
N1A0.0434 (10)0.0474 (10)0.0375 (9)0.0002 (8)−0.0086 (8)0.0109 (8)
N2A0.0645 (13)0.0678 (14)0.0390 (11)0.0034 (11)0.0013 (9)0.0032 (10)
C8A0.0443 (11)0.0414 (11)0.0380 (11)−0.0072 (9)−0.0035 (9)0.0042 (9)
C9A0.0401 (11)0.0455 (12)0.0539 (13)0.0031 (9)−0.0080 (10)0.0021 (10)
C10A0.0472 (12)0.0487 (12)0.0435 (12)−0.0025 (10)−0.0173 (9)0.0056 (10)
C11A0.0428 (11)0.0520 (13)0.0375 (11)−0.0071 (10)−0.0071 (9)−0.0022 (9)
C12A0.0405 (11)0.0436 (12)0.0485 (12)0.0016 (9)−0.0036 (9)0.0007 (10)
S1B0.0375 (3)0.0410 (3)0.0302 (2)0.00613 (19)0.00170 (18)−0.01102 (19)
O1B0.0503 (9)0.0549 (10)0.0337 (8)0.0255 (7)−0.0069 (7)−0.0143 (7)
O2B0.0735 (12)0.0750 (12)0.0305 (8)0.0284 (10)−0.0126 (8)−0.0174 (8)
O3B0.0641 (11)0.0569 (10)0.0401 (9)0.0240 (8)−0.0265 (8)−0.0124 (8)
O4B0.051 (5)0.115 (10)0.076 (7)0.002 (5)−0.006 (4)−0.067 (7)
O5B0.067 (7)0.052 (5)0.039 (4)−0.015 (4)0.022 (4)−0.018 (3)
O6B0.079 (5)0.057 (6)0.043 (3)0.041 (5)−0.012 (5)−0.014 (3)
O4Y0.044 (4)0.049 (5)0.035 (4)0.006 (2)−0.009 (3)−0.024 (3)
O5Y0.035 (4)0.053 (5)0.035 (4)0.004 (3)−0.001 (3)−0.007 (3)
O6Y0.078 (5)0.033 (3)0.058 (6)0.007 (4)0.028 (5)−0.009 (3)
C1B0.0306 (8)0.0294 (9)0.0324 (9)0.0055 (7)−0.0051 (7)−0.0053 (7)
C2B0.0299 (8)0.0334 (9)0.0292 (9)0.0036 (7)−0.0006 (7)−0.0077 (7)
C3B0.0416 (10)0.0429 (11)0.0259 (9)0.0084 (8)−0.0077 (7)−0.0027 (8)
C4B0.0421 (10)0.0386 (10)0.0349 (10)0.0146 (8)−0.0082 (8)−0.0044 (8)
C5B0.0329 (9)0.0323 (9)0.0316 (9)0.0073 (7)−0.0044 (7)−0.0092 (7)
C6B0.0308 (8)0.0293 (8)0.0284 (8)0.0027 (7)−0.0069 (7)−0.0059 (7)
C7B0.0446 (11)0.0368 (10)0.0314 (9)0.0057 (8)−0.0117 (8)−0.0077 (8)
Cl1B0.0757 (5)0.0929 (5)0.0356 (3)−0.0065 (4)−0.0114 (3)0.0010 (3)
N1B0.0349 (8)0.0443 (10)0.0331 (8)0.0013 (7)0.0007 (7)−0.0125 (7)
N2B0.0505 (11)0.0758 (15)0.0366 (10)0.0078 (10)−0.0084 (8)−0.0080 (10)
C8B0.0354 (10)0.0415 (11)0.0357 (10)−0.0041 (8)−0.0011 (8)−0.0070 (8)
C9B0.0405 (11)0.0451 (12)0.0480 (12)0.0086 (9)−0.0007 (9)−0.0113 (10)
C10B0.0476 (12)0.0508 (13)0.0379 (11)−0.0012 (10)0.0055 (9)−0.0166 (9)
C11B0.0465 (11)0.0437 (11)0.0315 (10)−0.0092 (9)−0.0047 (8)−0.0040 (8)
C12B0.0377 (10)0.0396 (11)0.0421 (11)−0.0010 (8)−0.0048 (8)−0.0052 (9)

Geometric parameters (Å, °)

S1A—O4A1.386 (18)S1B—O4B1.400 (15)
S1A—O5X1.407 (10)S1B—O5Y1.418 (14)
S1A—O6A1.411 (13)S1B—O6B1.436 (11)
S1A—O6X1.463 (12)S1B—O6Y1.462 (12)
S1A—O4X1.481 (16)S1B—O4Y1.481 (13)
S1A—O5A1.527 (17)S1B—O5B1.502 (17)
S1A—C2A1.7586 (19)S1B—C2B1.7605 (18)
O1A—C5A1.348 (2)O1B—C5B1.347 (2)
O1A—H1OA0.84 (3)O1B—H1OB0.84 (3)
O2A—C7A1.222 (2)O2B—C7B1.217 (3)
O3A—C7A1.314 (2)O3B—C7B1.312 (2)
O3A—H2OA0.83 (4)O3B—H2OB0.82 (3)
C1A—C2A1.378 (3)C1B—C2B1.375 (3)
C1A—C6A1.396 (2)C1B—C6B1.394 (2)
C1A—H1AA0.93C1B—H1BA0.93
C2A—C3A1.394 (3)C2B—C3B1.397 (3)
C3A—C4A1.378 (3)C3B—C4B1.378 (3)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.392 (3)C4B—C5B1.395 (3)
C4A—H4AA0.93C4B—H4BA0.93
C5A—C6A1.403 (2)C5B—C6B1.405 (2)
C6A—C7A1.472 (3)C6B—C7B1.475 (3)
Cl1A—C11A1.725 (2)Cl1B—C11B1.725 (2)
N1A—C8A1.352 (3)N1B—C8B1.344 (3)
N1A—C12A1.354 (3)N1B—C12B1.353 (3)
N1A—H1NA0.85 (3)N1B—H1NB0.88 (3)
N2A—C8A1.313 (3)N2B—C8B1.312 (3)
N2A—H2AA0.86N2B—H2BA0.86
N2A—H2AB0.86N2B—H2BB0.86
C8A—C9A1.421 (3)C8B—C9B1.417 (3)
C9A—C10A1.352 (4)C9B—C10B1.355 (3)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.406 (3)C10B—C11B1.404 (3)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.350 (3)C11B—C12B1.347 (3)
C12A—H12A0.93C12B—H12B0.93
O4A—S1A—O5X118.5 (11)O4B—S1B—O5Y111.5 (9)
O4A—S1A—O6A116.7 (12)O4B—S1B—O6B120.8 (18)
O5X—S1A—O6A96.8 (11)O5Y—S1B—O6B105.3 (9)
O4A—S1A—O6X102.2 (12)O4B—S1B—O6Y110.8 (18)
O5X—S1A—O6X111.5 (7)O5Y—S1B—O6Y111.5 (7)
O5X—S1A—O4X112.8 (8)O5Y—S1B—O4Y113.8 (7)
O6A—S1A—O4X123.8 (12)O6B—S1B—O4Y115.0 (14)
O6X—S1A—O4X109.6 (9)O6Y—S1B—O4Y105.0 (13)
O4A—S1A—O5A111.0 (11)O4B—S1B—O5B109.7 (10)
O6A—S1A—O5A110.2 (8)O6B—S1B—O5B111.7 (7)
O6X—S1A—O5A124.9 (10)O6Y—S1B—O5B118.3 (9)
O4X—S1A—O5A104.3 (10)O4Y—S1B—O5B112.6 (8)
O4A—S1A—C2A108.6 (9)O4B—S1B—C2B105.3 (8)
O5X—S1A—C2A108.6 (5)O5Y—S1B—C2B109.0 (8)
O6A—S1A—C2A106.6 (6)O6B—S1B—C2B104.2 (7)
O6X—S1A—C2A106.7 (6)O6Y—S1B—C2B108.4 (7)
O4X—S1A—C2A107.3 (8)O4Y—S1B—C2B109.0 (5)
O5A—S1A—C2A102.7 (7)O5B—S1B—C2B103.3 (9)
C5A—O1A—H1OA110 (2)C5B—O1B—H1OB104.2 (19)
C7A—O3A—H2OA111 (2)C7B—O3B—H2OB108 (2)
C2A—C1A—C6A120.28 (17)C2B—C1B—C6B120.67 (16)
C2A—C1A—H1AA119.9C2B—C1B—H1BA119.7
C6A—C1A—H1AA119.9C6B—C1B—H1BA119.7
C1A—C2A—C3A119.85 (18)C1B—C2B—C3B119.86 (17)
C1A—C2A—S1A119.28 (15)C1B—C2B—S1B119.63 (14)
C3A—C2A—S1A120.82 (15)C3B—C2B—S1B120.51 (15)
C4A—C3A—C2A120.5 (2)C4B—C3B—C2B120.22 (18)
C4A—C3A—H3AA119.7C4B—C3B—H3BA119.9
C2A—C3A—H3AA119.7C2B—C3B—H3BA119.9
C3A—C4A—C5A120.18 (19)C3B—C4B—C5B120.35 (17)
C3A—C4A—H4AA119.9C3B—C4B—H4BA119.8
C5A—C4A—H4AA119.9C5B—C4B—H4BA119.8
O1A—C5A—C4A117.78 (18)O1B—C5B—C4B117.54 (17)
O1A—C5A—C6A122.72 (18)O1B—C5B—C6B123.07 (17)
C4A—C5A—C6A119.49 (18)C4B—C5B—C6B119.39 (17)
C1A—C6A—C5A119.67 (17)C1B—C6B—C5B119.41 (17)
C1A—C6A—C7A120.87 (16)C1B—C6B—C7B121.17 (16)
C5A—C6A—C7A119.46 (16)C5B—C6B—C7B119.41 (17)
O2A—C7A—O3A122.55 (18)O2B—C7B—O3B123.09 (19)
O2A—C7A—C6A122.24 (18)O2B—C7B—C6B122.51 (18)
O3A—C7A—C6A115.18 (17)O3B—C7B—C6B114.34 (18)
C8A—N1A—C12A123.3 (2)C8B—N1B—C12B123.56 (19)
C8A—N1A—H1NA119 (2)C8B—N1B—H1NB118.3 (19)
C12A—N1A—H1NA117 (2)C12B—N1B—H1NB118.1 (19)
C8A—N2A—H2AA120.0C8B—N2B—H2BA120.0
C8A—N2A—H2AB120.0C8B—N2B—H2BB120.0
H2AA—N2A—H2AB120.0H2BA—N2B—H2BB120.0
N2A—C8A—N1A119.6 (2)N2B—C8B—N1B119.5 (2)
N2A—C8A—C9A123.5 (2)N2B—C8B—C9B123.7 (2)
N1A—C8A—C9A116.9 (2)N1B—C8B—C9B116.86 (19)
C10A—C9A—C8A120.5 (2)C10B—C9B—C8B120.7 (2)
C10A—C9A—H9AA119.8C10B—C9B—H9BA119.7
C8A—C9A—H9AA119.8C8B—C9B—H9BA119.7
C9A—C10A—C11A119.9 (2)C9B—C10B—C11B119.4 (2)
C9A—C10A—H10A120.1C9B—C10B—H10B120.3
C11A—C10A—H10A120.1C11B—C10B—H10B120.3
C12A—C11A—C10A119.4 (2)C12B—C11B—C10B119.6 (2)
C12A—C11A—Cl1A119.39 (19)C12B—C11B—Cl1B119.53 (18)
C10A—C11A—Cl1A121.21 (18)C10B—C11B—Cl1B120.81 (17)
C11A—C12A—N1A120.1 (2)C11B—C12B—N1B119.9 (2)
C11A—C12A—H12A120.0C11B—C12B—H12B120.1
N1A—C12A—H12A120.0N1B—C12B—H12B120.1
C6A—C1A—C2A—C3A−0.7 (3)C6B—C1B—C2B—C3B−0.7 (3)
C6A—C1A—C2A—S1A176.84 (15)C6B—C1B—C2B—S1B−179.98 (14)
O4A—S1A—C2A—C1A145.7 (11)O4B—S1B—C2B—C1B−146.3 (9)
O5X—S1A—C2A—C1A−84.1 (4)O5Y—S1B—C2B—C1B93.8 (6)
O6A—S1A—C2A—C1A19.2 (13)O6B—S1B—C2B—C1B−18.2 (11)
O6X—S1A—C2A—C1A36.2 (8)O6Y—S1B—C2B—C1B−27.7 (10)
O4X—S1A—C2A—C1A153.7 (9)O4Y—S1B—C2B—C1B−141.4 (5)
O5A—S1A—C2A—C1A−96.7 (12)O5B—S1B—C2B—C1B98.6 (7)
O4A—S1A—C2A—C3A−36.8 (11)O4B—S1B—C2B—C3B34.4 (9)
O5X—S1A—C2A—C3A93.4 (4)O5Y—S1B—C2B—C3B−85.4 (6)
O6A—S1A—C2A—C3A−163.3 (13)O6B—S1B—C2B—C3B162.5 (11)
O6X—S1A—C2A—C3A−146.3 (8)O6Y—S1B—C2B—C3B153.1 (10)
O4X—S1A—C2A—C3A−28.8 (9)O4Y—S1B—C2B—C3B39.3 (5)
O5A—S1A—C2A—C3A80.8 (12)O5B—S1B—C2B—C3B−80.6 (8)
C1A—C2A—C3A—C4A−0.1 (4)C1B—C2B—C3B—C4B1.3 (3)
S1A—C2A—C3A—C4A−177.6 (2)S1B—C2B—C3B—C4B−179.42 (17)
C2A—C3A—C4A—C5A0.2 (4)C2B—C3B—C4B—C5B0.6 (3)
C3A—C4A—C5A—O1A−179.9 (2)C3B—C4B—C5B—O1B177.2 (2)
C3A—C4A—C5A—C6A0.4 (4)C3B—C4B—C5B—C6B−3.1 (3)
C2A—C1A—C6A—C5A1.3 (3)C2B—C1B—C6B—C5B−1.8 (3)
C2A—C1A—C6A—C7A−177.93 (18)C2B—C1B—C6B—C7B177.69 (18)
O1A—C5A—C6A—C1A179.19 (19)O1B—C5B—C6B—C1B−176.61 (18)
C4A—C5A—C6A—C1A−1.2 (3)C4B—C5B—C6B—C1B3.7 (3)
O1A—C5A—C6A—C7A−1.6 (3)O1B—C5B—C6B—C7B3.9 (3)
C4A—C5A—C6A—C7A178.1 (2)C4B—C5B—C6B—C7B−175.82 (19)
C1A—C6A—C7A—O2A−179.1 (2)C1B—C6B—C7B—O2B175.9 (2)
C5A—C6A—C7A—O2A1.7 (3)C5B—C6B—C7B—O2B−4.7 (3)
C1A—C6A—C7A—O3A3.1 (3)C1B—C6B—C7B—O3B−6.8 (3)
C5A—C6A—C7A—O3A−176.13 (18)C5B—C6B—C7B—O3B172.69 (18)
C12A—N1A—C8A—N2A−180.0 (2)C12B—N1B—C8B—N2B−179.7 (2)
C12A—N1A—C8A—C9A0.6 (3)C12B—N1B—C8B—C9B0.5 (3)
N2A—C8A—C9A—C10A179.8 (2)N2B—C8B—C9B—C10B179.4 (2)
N1A—C8A—C9A—C10A−0.8 (3)N1B—C8B—C9B—C10B−0.8 (3)
C8A—C9A—C10A—C11A0.8 (4)C8B—C9B—C10B—C11B0.7 (4)
C9A—C10A—C11A—C12A−0.6 (3)C9B—C10B—C11B—C12B−0.1 (3)
C9A—C10A—C11A—Cl1A179.90 (19)C9B—C10B—C11B—Cl1B−178.64 (18)
C10A—C11A—C12A—N1A0.3 (3)C10B—C11B—C12B—N1B−0.3 (3)
Cl1A—C11A—C12A—N1A179.87 (17)Cl1B—C11B—C12B—N1B178.26 (16)
C8A—N1A—C12A—C11A−0.4 (4)C8B—N1B—C12B—C11B0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O6Xi0.862.082.900 (15)159
N2A—H2AB···O5Xii0.862.263.115 (9)171
N2B—H2BA···O6B0.862.343.114 (19)150
N2B—H2BA···O6Y0.862.202.985 (17)152
N2B—H2BB···O5Biii0.862.303.146 (17)168
N2B—H2BB···O5Yiii0.862.183.013 (15)164
O3A—H2OA···O5Biii0.83 (3)1.83 (4)2.657 (16)180 (5)
O3A—H2OA···O5Yiii0.83 (3)1.84 (4)2.663 (16)173 (3)
O3B—H2OB···O5Xiv0.82 (3)1.90 (3)2.698 (10)166 (3)
O1B—H1OB···O2B0.83 (3)1.84 (3)2.604 (2)152 (3)
O1A—H1OA···O2A0.84 (3)1.85 (3)2.584 (2)145 (3)
O1A—H1OA···O6B0.84 (3)2.51 (4)3.086 (16)127 (3)
O1A—H1OA···O6Y0.84 (3)2.58 (4)3.163 (18)128 (3)
N1B—H1NB···O4B0.88 (3)2.23 (4)2.999 (19)146 (3)
N1B—H1NB···O4Y0.88 (3)2.09 (3)2.865 (13)148 (3)
N1A—H1NA···O4Xi0.86 (3)2.08 (4)2.87 (2)153 (3)
C1A—H1AA···O1Bv0.932.603.422 (3)148

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z; (v) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5152).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253–o255.
  • Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.
  • Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017.
  • Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.
  • Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography