PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1059.
Published online 2010 August 4. doi:  10.1107/S1600536810030023
PMCID: PMC3008040

catena-Poly[[(pyrimidine-2-carb­oxy­lic acid)iron(II)]-μ-oxalato]

Abstract

In the title complex, [Fe(C2O4)(C5H4N2O4)]n, the FeII ion is coordinated by two oxalate anions and a pyrimidine-2-carb­oxy­lic acid ligand in a slightly distorted octa­hedral geometry. Each oxalate anion chelates to two FeII ions, forming chains along the a axis. The chains are further connected by O—H(...)O and C—H(...)O hydrogen bonds, stabilizing the structure. An intra­molecular O—H(...)N inter­action results in a five-membered ring.

Related literature

For related structures, see: Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1059-scheme1.jpg

Experimental

Crystal data

  • [Fe(C2O4)(C5H4N2O4)]
  • M r = 267.97
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1059-efi1.jpg
  • a = 9.0524 (18) Å
  • b = 9.1578 (18) Å
  • c = 11.329 (2) Å
  • V = 939.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.780, T max = 1
  • 7603 measured reflections
  • 1658 independent reflections
  • 1503 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.083
  • S = 1.11
  • 1658 reflections
  • 145 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 783 Friedel pairs
  • Flack parameter: 0.05 (3)

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030023/pv2297sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030023/pv2297Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission, Tianjin, People’s Republic of China (grant No. 20060503).

supplementary crystallographic information

Comment

Pyrimidine-2-carboxylic acid (HL) and oxalate anion have similar coordination mode, acting as bidentate ligands, and some Cd complexes have been reported containing both ligands (Zhang et al., 2008). Here we report the synthesis and crystal structure of a new iron complex with pyrimidine-2-carboxylic acid and oxalate as co-ligands.

In the title complex, the FeII ions are coordinated by one HL ligand and two oxalate anions in a slightly distorted octahedral geometry (Fig. 1). Each oxalate anion chelates to two FeII ions resulting a chain along the a-axis. There is an intramolecular interaction O6—H6···N2 resulting in a five membererd ring. The O—H···O and C—H···O type hydrogen bonds between the oxalate and HL ligands impart stability to the structure (Fig. 2).

Experimental

A mixture of Fe(III) chloride (2 mmol), oxalate acid (2 mmol)and pyrimidine-2-carbonitrile (1 mmol), in 10 ml dimethyl formamate (DMF) solvent was sealed in a Teflon-lined stainless-steel Parr bomb was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature; yield 20%.

Refinement

The absolute structure of the title complex was determined by the Flack (1983) method. Hydrogen atoms were included in calculated positions and treated as riding on their parent atoms with O—H and C—H = 0.85 and 0.93 Å, respectively and Uiso(H) = 1.2Ueq(O/C).

Figures

Fig. 1.
The coordinated mode and linkage of the complex. Ellipsoids are drawn at the 30% probability level. Symmetry codes: i = x+1/2,-y-1/2,z ii= x-1/2,-y-1/2,z
Fig. 2.
A partial packing diagram of the unit cell viewed down the c-axis.

Crystal data

[Fe(C2O4)(C5H4N2O4)]F(000) = 536
Mr = 267.97Dx = 1.895 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8691 reflections
a = 9.0524 (18) Åθ = 3.2–27.5°
b = 9.1578 (18) ŵ = 1.62 mm1
c = 11.329 (2) ÅT = 293 K
V = 939.2 (3) Å3Block, red
Z = 40.2 × 0.18 × 0.16 mm

Data collection

Rigaku SCXmini diffractometer1658 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
graphiteRint = 0.074
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.780, Tmax = 1k = −10→10
7603 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.0339P)2 + 0.7762P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1658 reflectionsΔρmax = 0.46 e Å3
145 parametersΔρmin = −0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 783 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.13566 (6)−0.08170 (6)0.71653 (7)0.02969 (18)
C40.1749 (5)0.2409 (5)0.7015 (4)0.0263 (10)
O50.2520 (4)0.0586 (3)0.8376 (3)0.0397 (9)
O1−0.0702 (3)−0.0924 (3)0.8009 (3)0.0293 (7)
N10.0989 (4)0.1349 (4)0.6452 (4)0.0307 (9)
O60.3406 (5)0.2878 (5)0.8630 (4)0.0624 (12)
H60.34560.37460.83690.075*
C30.2601 (5)0.1886 (5)0.8074 (4)0.0325 (11)
O3−0.2731 (3)−0.2329 (4)0.8046 (3)0.0353 (8)
O20.0098 (4)−0.2138 (4)0.5963 (3)0.0343 (8)
C70.0149 (5)0.1768 (6)0.5565 (4)0.0349 (12)
H7A−0.04050.10720.51630.042*
O4−0.1781 (4)−0.3696 (4)0.6089 (3)0.0368 (9)
C50.0923 (6)0.4168 (6)0.5831 (5)0.0438 (13)
H5A0.09160.51410.55970.053*
C60.0066 (6)0.3211 (6)0.5216 (5)0.0408 (13)
H6A−0.05390.35110.45980.049*
N20.1764 (5)0.3806 (4)0.6738 (4)0.0350 (11)
C2−0.1034 (5)−0.2649 (5)0.6452 (4)0.0263 (11)
C1−0.1539 (5)−0.1906 (5)0.7602 (4)0.0256 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0248 (3)0.0246 (3)0.0396 (4)−0.0008 (3)0.0015 (4)0.0021 (4)
C40.028 (2)0.028 (2)0.023 (3)0.0011 (17)0.002 (2)−0.002 (2)
O50.053 (2)0.0245 (19)0.042 (2)−0.0094 (17)−0.0203 (18)0.0093 (15)
O10.0252 (17)0.0282 (17)0.0344 (19)0.0003 (15)0.0030 (15)−0.0040 (15)
N10.030 (2)0.034 (2)0.029 (2)0.0011 (18)0.0004 (18)0.0003 (18)
O60.076 (3)0.049 (3)0.062 (3)−0.010 (2)−0.010 (2)0.007 (2)
C30.033 (3)0.035 (3)0.029 (3)−0.007 (2)−0.006 (2)−0.001 (2)
O30.0304 (19)0.0338 (19)0.042 (2)−0.0084 (16)0.0102 (17)−0.0078 (17)
O20.0298 (18)0.0426 (19)0.0304 (18)−0.0060 (16)0.0071 (16)−0.0054 (17)
C70.033 (3)0.042 (3)0.030 (3)−0.002 (2)−0.007 (2)−0.003 (2)
O40.0292 (18)0.041 (2)0.040 (2)−0.0042 (16)0.0069 (17)−0.0142 (17)
C50.053 (3)0.033 (3)0.045 (3)0.010 (3)−0.001 (3)0.008 (3)
C60.043 (3)0.043 (3)0.037 (3)0.010 (3)−0.008 (3)0.002 (2)
N20.041 (3)0.024 (2)0.039 (3)−0.0041 (17)−0.0069 (19)0.0036 (16)
C20.023 (2)0.030 (3)0.026 (3)0.007 (2)−0.001 (2)−0.001 (2)
C10.021 (2)0.024 (2)0.032 (2)0.003 (2)0.0027 (19)0.0036 (18)

Geometric parameters (Å, °)

Fe1—O12.097 (3)O6—H60.8500
Fe1—O4i2.128 (3)O3—C11.252 (5)
Fe1—O3i2.136 (3)O3—Fe1ii2.136 (3)
Fe1—O22.148 (3)O2—C21.255 (6)
Fe1—O52.154 (3)C7—C61.382 (7)
Fe1—N12.168 (4)C7—H7A0.9300
C4—N21.318 (6)O4—C21.243 (6)
C4—N11.350 (6)O4—Fe1ii2.128 (3)
C4—C31.504 (7)C5—N21.321 (7)
O5—C31.240 (6)C5—C61.362 (8)
O1—C11.263 (6)C5—H5A0.9300
N1—C71.317 (6)C6—H6A0.9300
O6—C31.325 (6)C2—C11.540 (6)
O1—Fe1—O4i162.87 (14)C3—O6—H6120.4
O1—Fe1—O3i95.38 (13)O5—C3—O6124.0 (4)
O4i—Fe1—O3i78.16 (13)O5—C3—C4119.7 (4)
O1—Fe1—O277.96 (12)O6—C3—C4116.3 (4)
O4i—Fe1—O286.49 (14)C1—O3—Fe1ii113.1 (3)
O3i—Fe1—O293.08 (14)C2—O2—Fe1111.3 (3)
O1—Fe1—O599.90 (14)N1—C7—C6121.9 (5)
O4i—Fe1—O595.90 (15)N1—C7—H7A119.1
O3i—Fe1—O589.29 (13)C6—C7—H7A119.1
O2—Fe1—O5176.94 (13)C2—O4—Fe1ii113.7 (3)
O1—Fe1—N194.37 (14)N2—C5—C6124.4 (5)
O4i—Fe1—N195.72 (14)N2—C5—H5A117.8
O3i—Fe1—N1163.96 (15)C6—C5—H5A117.8
O2—Fe1—N1101.40 (14)C5—C6—C7115.9 (5)
O5—Fe1—N176.50 (14)C5—C6—H6A122.0
N2—C4—N1126.2 (5)C7—C6—H6A122.0
N2—C4—C3119.6 (4)C4—N2—C5115.0 (4)
N1—C4—C3114.2 (4)O4—C2—O2125.8 (5)
C3—O5—Fe1115.2 (3)O4—C2—C1117.4 (4)
C1—O1—Fe1113.6 (3)O2—C2—C1116.8 (4)
C7—N1—C4116.5 (4)O3—C1—O1126.2 (4)
C7—N1—Fe1129.7 (4)O3—C1—C2117.3 (4)
C4—N1—Fe1113.8 (3)O1—C1—C2116.5 (4)
O1—Fe1—O5—C3−99.7 (4)N1—C4—C3—O5−2.3 (6)
O4i—Fe1—O5—C386.9 (4)N2—C4—C3—O6−4.2 (7)
O3i—Fe1—O5—C3165.0 (4)N1—C4—C3—O6177.7 (4)
N1—Fe1—O5—C3−7.5 (4)O1—Fe1—O2—C2−17.7 (3)
O4i—Fe1—O1—C1−10.5 (6)O4i—Fe1—O2—C2155.1 (3)
O3i—Fe1—O1—C1−77.3 (3)O3i—Fe1—O2—C277.2 (3)
O2—Fe1—O1—C114.7 (3)N1—Fe1—O2—C2−109.8 (3)
O5—Fe1—O1—C1−167.5 (3)C4—N1—C7—C61.0 (7)
N1—Fe1—O1—C1115.5 (3)Fe1—N1—C7—C6−178.9 (4)
N2—C4—N1—C7−2.3 (7)N2—C5—C6—C7−2.2 (9)
C3—C4—N1—C7175.7 (4)N1—C7—C6—C51.0 (8)
N2—C4—N1—Fe1177.7 (4)N1—C4—N2—C51.2 (7)
C3—C4—N1—Fe1−4.3 (5)C3—C4—N2—C5−176.7 (4)
O1—Fe1—N1—C7−74.8 (4)C6—C5—N2—C41.2 (8)
O4i—Fe1—N1—C791.3 (4)Fe1ii—O4—C2—O2−178.8 (4)
O3i—Fe1—N1—C7157.9 (5)Fe1ii—O4—C2—C11.0 (5)
O2—Fe1—N1—C73.8 (4)Fe1—O2—C2—O4−162.4 (4)
O5—Fe1—N1—C7−174.0 (4)Fe1—O2—C2—C117.8 (5)
O1—Fe1—N1—C4105.3 (3)Fe1ii—O3—C1—O1−173.3 (4)
O4i—Fe1—N1—C4−88.6 (3)Fe1ii—O3—C1—C26.6 (5)
O3i—Fe1—N1—C4−22.1 (7)Fe1—O1—C1—O3169.6 (4)
O2—Fe1—N1—C4−176.2 (3)Fe1—O1—C1—C2−10.3 (5)
O5—Fe1—N1—C46.1 (3)O4—C2—C1—O3−5.4 (6)
Fe1—O5—C3—O6−172.2 (4)O2—C2—C1—O3174.4 (4)
Fe1—O5—C3—C47.8 (6)O4—C2—C1—O1174.4 (4)
N2—C4—C3—O5175.8 (5)O2—C2—C1—O1−5.7 (6)

Symmetry codes: (i) x+1/2, −y−1/2, z; (ii) x−1/2, −y−1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O3iii0.932.483.279 (6)145
O6—H6···O1iv0.852.172.988 (5)161
O6—H6···N20.852.402.743 (6)105

Symmetry codes: (iii) −x−1/2, y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2297).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, J.-Y., Yue, Q., Jia, Q.-X., Cheng, A.-L. & Gao, E.-Q. (2008). CrystEngComm, 10 1443–1449.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography