PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2441.
Published online 2010 August 28. doi:  10.1107/S1600536810034239
PMCID: PMC3008033

3-Chloro-6-[2-(propan-2-yl­idene)hydrazin­yl]pyridazine

Abstract

In the title compound, C7H9ClN4, the 3-chloro-6-hydrazinylpyridazine unit is planar (r.m.s. deviation = 0.0219 Å) and is oriented at a dihedral angle 4.66 (27)° with respect to the propan-2-yl­idene group. In the crystal, the mol­ecules are linked into non-planar dimers due to a crystallographic twofold rotation via N—H(...)N hydrogen bonds with R 2 2(8) graph-set ring motifs.

Related literature

For a related structure, see: Ather et al. (2010 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2441-scheme1.jpg

Experimental

Crystal data

  • C7H9ClN4
  • M r = 184.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2441-efi2.jpg
  • a = 20.6635 (19) Å
  • b = 7.8202 (6) Å
  • c = 11.3266 (8) Å
  • β = 94.140 (3)°
  • V = 1825.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 296 K
  • 0.30 × 0.15 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.982, T max = 0.988
  • 6699 measured reflections
  • 1658 independent reflections
  • 1176 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.114
  • S = 1.02
  • 1658 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034239/si2291sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034239/si2291Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation to 3-chloro-6-hydrazinylpyridazine derivatives (Ather et al., 2010), the title compound (I, Fig. 1) is being reported here.

In (I), the 3-chloro-6-hydrazinylpyridazine moiety A (C1—C4/N1—N4/CL1) is planar with r. m. s. deviation of 0.0219 Å. The propyl group B(C5/C6/C7) is certainly planar. The dihedral angle between A/B is 4.66 (27)°. The title compound consists of non-planar dimers due to N—H···N type of H-bonding (Table 1, Fig. 2) with R22(8) ring motif (Bernstein et al., 1995). The dimers are formed due to a crystallographic twofold rotation axis parallel b and located in c = 1/4.

Experimental

3-Chloro-6-hydrazinylpyridazine (0.5 g, 3.46 mmol), dissolved in acetone was refluxed for 15 min. The unreacted acetone was distilled off yielding in crude material. The product was re-crystallized in alcohol to affoard the colorless needles of (I).

Refinement

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Perspective view of a pair of symmetry related title molecules with the N—H···N hydrogen bonds indicated by dashed lines [Symmetry code: a = - x, y, - z + 1/2].

Crystal data

C7H9ClN4F(000) = 768
Mr = 184.63Dx = 1.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1176 reflections
a = 20.6635 (19) Åθ = 2.0–25.3°
b = 7.8202 (6) ŵ = 0.37 mm1
c = 11.3266 (8) ÅT = 296 K
β = 94.140 (3)°Needle, colorless
V = 1825.5 (3) Å30.30 × 0.15 × 0.14 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer1658 independent reflections
Radiation source: fine-focus sealed tube1176 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.0°
ω scansh = −23→24
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −9→8
Tmin = 0.982, Tmax = 0.988l = −11→13
6699 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0466P)2 + 1.083P] where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.24961 (3)0.56355 (11)0.22863 (7)0.0864 (3)
N10.08033 (8)0.3556 (2)0.21840 (14)0.0503 (6)
N20.13843 (9)0.4249 (2)0.25439 (15)0.0547 (7)
N30.00430 (8)0.2720 (2)0.07587 (14)0.0528 (6)
N4−0.01436 (9)0.2424 (2)−0.04230 (13)0.0497 (6)
C10.06381 (10)0.3389 (3)0.10295 (16)0.0429 (7)
C20.10598 (11)0.3850 (3)0.01608 (18)0.0519 (8)
C30.16374 (12)0.4516 (3)0.0531 (2)0.0583 (9)
C40.17733 (11)0.4706 (3)0.1745 (2)0.0537 (8)
C5−0.06866 (11)0.1693 (3)−0.06689 (17)0.0469 (7)
C6−0.08681 (12)0.1354 (3)−0.19521 (18)0.0628 (9)
C7−0.11442 (12)0.1098 (3)0.0200 (2)0.0663 (9)
H20.094220.36991−0.064050.0622*
H30.193590.48381−0.000390.0699*
H3A−0.021220.248480.130340.0634*
H6A−0.055900.18936−0.242480.0942*
H6B−0.129260.18084−0.216050.0942*
H6C−0.086880.01439−0.209330.0942*
H7A−0.092860.029220.073290.0994*
H7B−0.151160.05591−0.021350.0994*
H7C−0.128760.205820.063960.0994*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0588 (5)0.1068 (6)0.0929 (6)−0.0195 (4)0.0002 (3)−0.0051 (4)
N10.0506 (11)0.0648 (12)0.0357 (10)−0.0027 (9)0.0055 (8)0.0008 (8)
N20.0537 (12)0.0650 (12)0.0451 (10)−0.0025 (9)0.0026 (9)−0.0020 (9)
N30.0547 (12)0.0714 (12)0.0332 (9)−0.0086 (10)0.0089 (8)−0.0016 (9)
N40.0558 (12)0.0615 (11)0.0321 (9)0.0040 (9)0.0046 (8)−0.0021 (8)
C10.0483 (13)0.0454 (11)0.0355 (11)0.0028 (9)0.0062 (9)−0.0001 (9)
C20.0598 (15)0.0606 (14)0.0363 (11)−0.0014 (11)0.0109 (10)0.0009 (10)
C30.0591 (16)0.0653 (15)0.0527 (14)−0.0003 (12)0.0197 (11)0.0042 (12)
C40.0485 (14)0.0565 (13)0.0562 (14)0.0010 (10)0.0056 (10)0.0012 (11)
C50.0535 (14)0.0484 (12)0.0389 (11)0.0056 (10)0.0040 (10)−0.0003 (10)
C60.0659 (16)0.0787 (17)0.0431 (12)0.0017 (13)−0.0011 (11)−0.0038 (12)
C70.0731 (17)0.0757 (16)0.0507 (14)−0.0198 (14)0.0088 (12)−0.0024 (12)

Geometric parameters (Å, °)

Cl1—C41.733 (2)C5—C61.498 (3)
N1—N21.353 (2)C5—C71.488 (3)
N1—C11.334 (2)C2—H20.9300
N2—C41.303 (3)C3—H30.9300
N3—N41.385 (2)C6—H6A0.9600
N3—C11.351 (3)C6—H6B0.9600
N4—C51.272 (3)C6—H6C0.9600
N3—H3A0.8600C7—H7A0.9600
C1—C21.408 (3)C7—H7B0.9600
C2—C31.341 (3)C7—H7C0.9600
C3—C41.391 (3)
N1···N3i3.083 (2)H3A···C72.4700
N2···C2ii3.425 (3)H3A···H7A2.3300
N3···N1i3.083 (2)H3A···H7C2.3200
N1···H3Ai2.3300H3A···N1i2.3300
N1···H6Ciii2.9000H6A···H6Avii2.3300
N1···H7Ci2.8500H6B···H7B2.4800
N2···H7Ci2.7000H6B···C4v2.9500
N2···H2ii2.8100H6C···N1iii2.9000
N3···H7A2.7600H6C···C1iii3.0400
N3···H7C2.7900H6C···H7Avi2.4800
N4···H22.4800H7A···N32.7600
C2···N2iv3.425 (3)H7A···H3A2.3300
C3···C5v3.566 (3)H7A···C6viii2.9200
C5···C3v3.566 (3)H7A···H6Cviii2.4800
C1···H6Ciii3.0400H7B···H6B2.4800
C3···H7Cv3.0500H7C···N32.7900
C4···H6Bv2.9500H7C···H3A2.3200
C6···H7Avi2.9200H7C···N1i2.8500
C7···H3A2.4700H7C···N2i2.7000
H2···N42.4800H7C···C3v3.0500
H2···N2iv2.8100
N2—N1—C1119.56 (17)C1—C2—H2121.00
N1—N2—C4118.63 (17)C3—C2—H2121.00
N4—N3—C1117.99 (16)C2—C3—H3121.00
N3—N4—C5117.79 (16)C4—C3—H3121.00
N4—N3—H3A121.00C5—C6—H6A109.00
C1—N3—H3A121.00C5—C6—H6B109.00
N1—C1—N3115.14 (17)C5—C6—H6C109.00
N1—C1—C2122.19 (19)H6A—C6—H6B109.00
N3—C1—C2122.66 (17)H6A—C6—H6C109.00
C1—C2—C3117.56 (19)H6B—C6—H6C109.00
C2—C3—C4117.5 (2)C5—C7—H7A109.00
Cl1—C4—C3120.12 (18)C5—C7—H7B109.00
N2—C4—C3124.5 (2)C5—C7—H7C109.00
Cl1—C4—N2115.37 (17)H7A—C7—H7B109.00
C6—C5—C7117.4 (2)H7A—C7—H7C110.00
N4—C5—C6116.55 (19)H7B—C7—H7C109.00
N4—C5—C7126.04 (18)
C1—N1—N2—C4−1.3 (3)N3—N4—C5—C6−178.64 (18)
N2—N1—C1—N3−178.55 (17)N3—N4—C5—C7−0.8 (3)
N2—N1—C1—C22.5 (3)N1—C1—C2—C3−1.7 (3)
N1—N2—C4—Cl1178.26 (14)N3—C1—C2—C3179.5 (2)
N1—N2—C4—C3−0.7 (3)C1—C2—C3—C4−0.3 (3)
C1—N3—N4—C5175.6 (2)C2—C3—C4—Cl1−177.43 (19)
N4—N3—C1—N1−176.46 (17)C2—C3—C4—N21.5 (4)
N4—N3—C1—C22.5 (3)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) −x, −y, −z; (iv) x, −y+1, z−1/2; (v) −x, −y+1, −z; (vi) x, −y, z−1/2; (vii) −x, y, −z−1/2; (viii) x, −y, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.333.083 (2)146

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2291).

References

  • Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2107. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography