PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2390.
Published online 2010 August 25. doi:  10.1107/S1600536810033271
PMCID: PMC3008032

4-(1H-Tetra­zol-5-yl)-1H-indole

Abstract

There are two mol­ecules with similar configurations in the asymmetric unit of the title compound, C9H7N5, which are linked by inter­molecular N—H(...)N hydrogen bonds into chains with graph-set motif C 2 2(8) along the b axis. The indole core has the expected planar geometry in the two mol­ecules, with a maximum deviation of 0.008 (8) Å from the least-squares plane defined by the nine constituent atoms, and the dihedral angles between the indole and tetra­zole rings are similar [42.4 (2) and 42.7 (2)°].

Related literature

For the biological properties of indole and its derivatives, see: Takatoshi & Makoto (1994 [triangle]). For physical properties of tetra­zole, see: Itoh et al., (1995 [triangle]). For pharmacological properties of compounds with tetra­zole and indole rings, see: Semenov (2002 [triangle]). For the synthesis of 5-cyano­indole, see: Frederick (1949 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2390-scheme1.jpg

Experimental

Crystal data

  • C9H7N5
  • M r = 185.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2390-efi1.jpg
  • a = 9.6535 (7) Å
  • b = 9.8444 (4) Å
  • c = 9.9672 (7) Å
  • α = 83.204 (3)°
  • β = 65.712 (6)°
  • γ = 87.627 (3)°
  • V = 857.28 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.30 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.737, T max = 1.000
  • 6939 measured reflections
  • 2990 independent reflections
  • 2403 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.240
  • S = 1.02
  • 2990 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033271/bx2301sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033271/bx2301Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Indole and its derivatives always possess good physiological activity, which are widely used as medicine, pesticide and organic chemical intermediates (Takatoshi & Makoto, 1994). Meanwhile, tetrazole is not only of good anticancer activities but also a kind of excellent ligands, it can coordinate all kinds of metal ions to form the complexes with significant optical activity (Itoh et al., 1995). In recent decades, there are some reports on the compounds which are synthesized by the combination of the tetrazole and indole rings, and the property study reveals that these compounds always perform unique pharmacological activities (Semenov, 2002).We report here the compound structure of 4- (1-H-tetrazol-5-yl)-1H-indole, (I). As far as we know, there are no reports on the indole connecting the tetrazole on the C atom. In the title compound C9H7N5, (I) there two molecules in the asymmetric unit which are linked by one intra and intermolecular N—H···N hydrogen bond with set graph-motif C22(8) along b axis (Bernstein et al., 1995), Fig. 2. The indole core has the expected planar geometry. In both molecules of the symmetric unit the dihedral angles between the indole and tetrazole rings are very close similar 42.4 (2) and 42.7 (2)° so, the two crystallographically independent molecules have almost the same extended conformations and similar bond lengths and angles.

Experimental

All chemicals used (reagent grade) were commercially available. 5-Cyanoindole is synthesized following the methods described by Frederick (Frederick, 1949). To the stirring DMF solution of NaN3 and Triethylamine, 5-Cyanoindole was added. Then the whole mixture was heated to 120°C, 1 h later, the solution was cooled to room temperature, and DMF was distilled in vacuum. With some follow-up treatment, the crude product was recrystallized in methanol and seven days later, yellow prism crystal was obtained.

Refinement

In general, H atoms bound to carbon were placed in geometrical positions and refined using a riding model, with C—H = 0.93 and

N—H = 0.86 Å, Uiso(H) =1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the the atom-numbering scheme.
Fig. 2.
The molecular packing of the title compound (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H7N5Z = 4
Mr = 185.20F(000) = 384
Triclinic, P1Dx = 1.435 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6535 (7) ÅCell parameters from 2795 reflections
b = 9.8444 (4) Åθ = 3.1–27.5°
c = 9.9672 (7) ŵ = 0.10 mm1
α = 83.204 (3)°T = 293 K
β = 65.712 (6)°Prism, yellow
γ = 87.627 (3)°0.30 × 0.15 × 0.15 mm
V = 857.28 (9) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer2990 independent reflections
Radiation source: fine-focus sealed tube2403 reflections with I > 2σ(I)
graphiteRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.1°
CCD_Profile_fitting scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.737, Tmax = 1.000l = −11→11
6939 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.1252P)2 + 1.2926P] where P = (Fo2 + 2Fc2)/3
2990 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1822 (4)0.5189 (4)0.2581 (4)0.0371 (8)
C20.1565 (4)0.5725 (4)0.1253 (4)0.0397 (9)
C30.2419 (4)0.5213 (4)−0.0106 (4)0.0411 (9)
C40.3642 (5)0.4250 (4)−0.0615 (5)0.0527 (11)
H4B0.41280.3779−0.00680.063*
C50.3934 (5)0.4173 (5)−0.2057 (5)0.0574 (11)
H5B0.46670.3614−0.26670.069*
C60.2055 (5)0.5708 (4)−0.1327 (4)0.0435 (9)
C70.0930 (5)0.6655 (4)−0.1257 (5)0.0479 (10)
H7B0.07340.6951−0.20830.057*
C80.0109 (5)0.7143 (4)0.0100 (5)0.0489 (10)
H8B−0.06610.77740.01960.059*
C90.0433 (4)0.6690 (4)0.1319 (4)0.0405 (9)
H9B−0.01240.70420.22120.049*
C100.2369 (4)0.9946 (3)0.2932 (4)0.0361 (8)
C110.3995 (4)0.9972 (4)0.2597 (4)0.0369 (8)
C120.4597 (4)0.9141 (4)0.3474 (4)0.0364 (8)
C130.3959 (5)0.8222 (4)0.4804 (4)0.0427 (9)
H13A0.29400.79790.53270.051*
C140.5141 (5)0.7769 (4)0.5158 (5)0.0484 (10)
H14A0.50460.71670.59840.058*
C150.6195 (4)0.9196 (4)0.3068 (4)0.0400 (9)
C160.7170 (5)1.0037 (4)0.1850 (5)0.0506 (10)
H16A0.82101.00500.16010.061*
C170.6541 (5)1.0853 (5)0.1024 (5)0.0531 (11)
H17A0.71681.14320.02090.064*
C180.4975 (5)1.0825 (4)0.1391 (5)0.0466 (10)
H18A0.45831.13890.08160.056*
N10.1790 (4)0.5964 (3)0.3603 (3)0.0386 (7)
H1A0.16850.68380.35520.046*
N20.1950 (4)0.5168 (3)0.4730 (4)0.0446 (8)
N30.2064 (4)0.3928 (3)0.4385 (4)0.0467 (8)
N40.2006 (4)0.3901 (3)0.3040 (4)0.0435 (8)
N50.3005 (4)0.5030 (4)−0.2493 (4)0.0547 (9)
H5A0.30150.5130−0.33650.066*
N90.1456 (3)0.8869 (3)0.3328 (4)0.0400 (8)
N80.0065 (4)0.9348 (3)0.3460 (4)0.0469 (8)
N70.0106 (4)1.0667 (3)0.3174 (4)0.0467 (8)
N60.1544 (4)1.1054 (3)0.2838 (4)0.0412 (8)
H6A0.18801.18830.26010.049*
N100.6481 (4)0.8330 (3)0.4119 (4)0.0470 (8)
H10A0.73630.81680.41210.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.040 (2)0.0331 (18)0.039 (2)−0.0061 (15)−0.0166 (16)−0.0030 (15)
C20.044 (2)0.0339 (18)0.045 (2)−0.0051 (16)−0.0215 (18)−0.0025 (15)
C30.041 (2)0.040 (2)0.043 (2)−0.0047 (16)−0.0178 (17)−0.0036 (16)
C40.049 (2)0.042 (2)0.069 (3)0.0052 (18)−0.025 (2)−0.011 (2)
C50.056 (3)0.057 (3)0.052 (3)0.000 (2)−0.013 (2)−0.014 (2)
C60.051 (2)0.048 (2)0.034 (2)−0.0138 (18)−0.0212 (17)0.0030 (16)
C70.054 (2)0.049 (2)0.050 (2)−0.0084 (19)−0.032 (2)0.0047 (18)
C80.043 (2)0.042 (2)0.065 (3)−0.0011 (17)−0.027 (2)−0.0027 (19)
C90.038 (2)0.0358 (19)0.048 (2)0.0008 (15)−0.0181 (17)−0.0065 (16)
C100.043 (2)0.0288 (17)0.044 (2)0.0036 (15)−0.0243 (17)−0.0075 (15)
C110.0369 (19)0.0323 (18)0.044 (2)0.0016 (15)−0.0188 (16)−0.0067 (15)
C120.0382 (19)0.0326 (18)0.043 (2)0.0034 (15)−0.0198 (16)−0.0081 (15)
C130.046 (2)0.040 (2)0.043 (2)0.0027 (16)−0.0186 (18)−0.0048 (16)
C140.053 (2)0.050 (2)0.047 (2)0.0083 (19)−0.027 (2)−0.0031 (18)
C150.0348 (19)0.040 (2)0.050 (2)0.0055 (15)−0.0217 (17)−0.0128 (17)
C160.041 (2)0.052 (2)0.058 (3)−0.0035 (18)−0.019 (2)−0.011 (2)
C170.050 (2)0.055 (2)0.052 (2)−0.010 (2)−0.019 (2)0.0002 (19)
C180.051 (2)0.040 (2)0.051 (2)−0.0028 (17)−0.026 (2)0.0036 (17)
N10.0492 (18)0.0278 (15)0.0448 (18)0.0002 (13)−0.0255 (15)−0.0034 (12)
N20.059 (2)0.0448 (19)0.0367 (17)−0.0017 (15)−0.0272 (16)0.0015 (14)
N30.058 (2)0.0412 (18)0.049 (2)0.0004 (15)−0.0331 (17)0.0069 (14)
N40.051 (2)0.0360 (17)0.0468 (19)0.0025 (14)−0.0231 (16)−0.0047 (14)
N50.061 (2)0.063 (2)0.0390 (19)−0.0047 (18)−0.0200 (17)−0.0027 (16)
N90.0388 (17)0.0334 (16)0.055 (2)0.0025 (13)−0.0259 (15)−0.0060 (14)
N80.0436 (19)0.0404 (18)0.065 (2)0.0011 (14)−0.0299 (17)−0.0063 (16)
N70.0447 (19)0.0421 (18)0.059 (2)0.0022 (14)−0.0278 (17)−0.0018 (15)
N60.0442 (18)0.0301 (15)0.056 (2)0.0027 (13)−0.0278 (16)−0.0020 (13)
N100.0412 (18)0.053 (2)0.057 (2)0.0129 (15)−0.0305 (17)−0.0113 (16)

Geometric parameters (Å, °)

C1—N41.326 (5)C12—C151.427 (5)
C1—N11.333 (5)C12—C131.430 (5)
C1—C21.479 (5)C13—C141.370 (6)
C2—C91.404 (5)C13—H13A0.9300
C2—C31.407 (5)C14—N101.368 (6)
C3—C61.428 (5)C14—H14A0.9300
C3—C41.441 (6)C15—N101.382 (5)
C4—C51.357 (6)C15—C161.390 (6)
C4—H4B0.9300C16—C171.381 (6)
C5—N51.369 (6)C16—H16A0.9300
C5—H5B0.9300C17—C181.402 (6)
C6—N51.376 (5)C17—H17A0.9300
C6—C71.386 (6)C18—H18A0.9300
C7—C81.388 (6)N1—N21.350 (4)
C7—H7B0.9300N1—H1A0.8600
C8—C91.396 (6)N2—N31.295 (5)
C8—H8B0.9300N3—N41.369 (4)
C9—H9B0.9300N5—H5A0.8600
C10—N91.323 (5)N9—N81.364 (4)
C10—N61.341 (4)N8—N71.295 (4)
C10—C111.465 (5)N7—N61.347 (4)
C11—C181.392 (5)N6—H6A0.8600
C11—C121.406 (5)N10—H10A0.8600
N4—C1—N1107.9 (3)C14—C13—C12106.7 (4)
N4—C1—C2128.4 (3)C14—C13—H13A126.7
N1—C1—C2123.5 (3)C12—C13—H13A126.7
C9—C2—C3118.4 (4)N10—C14—C13110.2 (4)
C9—C2—C1121.9 (3)N10—C14—H14A124.9
C3—C2—C1119.7 (3)C13—C14—H14A124.9
C2—C3—C6117.1 (4)N10—C15—C16130.6 (4)
C2—C3—C4135.0 (4)N10—C15—C12106.8 (3)
C6—C3—C4107.9 (4)C16—C15—C12122.6 (4)
C5—C4—C3105.7 (4)C17—C16—C15117.7 (4)
C5—C4—H4B127.2C17—C16—H16A121.2
C3—C4—H4B127.2C15—C16—H16A121.2
C4—C5—N5110.8 (4)C16—C17—C18121.2 (4)
C4—C5—H5B124.6C16—C17—H17A119.4
N5—C5—H5B124.6C18—C17—H17A119.4
N5—C6—C7129.9 (4)C11—C18—C17121.4 (4)
N5—C6—C3105.7 (4)C11—C18—H18A119.3
C7—C6—C3124.4 (4)C17—C18—H18A119.3
C6—C7—C8117.1 (4)C1—N1—N2109.6 (3)
C6—C7—H7B121.4C1—N1—H1A125.2
C8—C7—H7B121.4N2—N1—H1A125.2
C7—C8—C9120.3 (4)N3—N2—N1105.8 (3)
C7—C8—H8B119.8N2—N3—N4110.8 (3)
C9—C8—H8B119.8C1—N4—N3105.9 (3)
C8—C9—C2122.7 (4)C5—N5—C6109.9 (4)
C8—C9—H9B118.7C5—N5—H5A125.0
C2—C9—H9B118.7C6—N5—H5A125.0
N9—C10—N6107.4 (3)C10—N9—N8106.6 (3)
N9—C10—C11128.0 (3)N7—N8—N9110.3 (3)
N6—C10—C11124.6 (3)N8—N7—N6106.3 (3)
C18—C11—C12118.8 (3)C10—N6—N7109.4 (3)
C18—C11—C10120.0 (3)C10—N6—H6A125.3
C12—C11—C10121.2 (3)N7—N6—H6A125.3
C11—C12—C15118.3 (3)C14—N10—C15109.3 (3)
C11—C12—C13134.6 (3)C14—N10—H10A125.4
C15—C12—C13107.0 (3)C15—N10—H10A125.4
N4—C1—C2—C9133.5 (4)C12—C13—C14—N10−1.0 (5)
N1—C1—C2—C9−41.2 (5)C11—C12—C15—N10178.1 (3)
N4—C1—C2—C3−43.3 (6)C13—C12—C15—N100.4 (4)
N1—C1—C2—C3142.1 (4)C11—C12—C15—C160.2 (5)
C9—C2—C3—C6−0.7 (5)C13—C12—C15—C16−177.5 (4)
C1—C2—C3—C6176.2 (3)N10—C15—C16—C17−176.8 (4)
C9—C2—C3—C4179.7 (4)C12—C15—C16—C170.6 (6)
C1—C2—C3—C4−3.4 (6)C15—C16—C17—C18−0.6 (6)
C2—C3—C4—C5178.1 (4)C12—C11—C18—C171.1 (6)
C6—C3—C4—C5−1.5 (4)C10—C11—C18—C17−178.7 (4)
C3—C4—C5—N50.9 (5)C16—C17—C18—C11−0.2 (7)
C2—C3—C6—N5−178.3 (3)N4—C1—N1—N2−0.2 (4)
C4—C3—C6—N51.4 (4)C2—C1—N1—N2175.4 (3)
C2—C3—C6—C70.4 (6)C1—N1—N2—N3−0.5 (4)
C4—C3—C6—C7−180.0 (4)N1—N2—N3—N40.9 (4)
N5—C6—C7—C8178.0 (4)N1—C1—N4—N30.8 (4)
C3—C6—C7—C8−0.3 (6)C2—C1—N4—N3−174.6 (4)
C6—C7—C8—C90.5 (6)N2—N3—N4—C1−1.1 (4)
C7—C8—C9—C2−0.9 (6)C4—C5—N5—C6−0.1 (5)
C3—C2—C9—C81.0 (5)C7—C6—N5—C5−179.4 (4)
C1—C2—C9—C8−175.8 (3)C3—C6—N5—C5−0.8 (4)
N9—C10—C11—C18137.4 (4)N6—C10—N9—N80.5 (4)
N6—C10—C11—C18−40.4 (5)C11—C10—N9—N8−177.6 (4)
N9—C10—C11—C12−42.3 (6)C10—N9—N8—N7−0.6 (4)
N6—C10—C11—C12139.8 (4)N9—N8—N7—N60.5 (4)
C18—C11—C12—C15−1.1 (5)N9—C10—N6—N7−0.2 (4)
C10—C11—C12—C15178.7 (3)C11—C10—N6—N7178.0 (3)
C18—C11—C12—C13175.9 (4)N8—N7—N6—C10−0.2 (4)
C10—C11—C12—C13−4.3 (6)C13—C14—N10—C151.3 (5)
C11—C12—C13—C14−176.9 (4)C16—C15—N10—C14176.6 (4)
C15—C12—C13—C140.3 (4)C12—C15—N10—C14−1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N90.862.002.858 (4)177.
N6—H6A···N4i0.862.102.899 (4)154.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2301).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Frederick, C. U. (1949). J. Am. Chem. Soc.71, 761–766. [PubMed]
  • Itoh, F., Yukishige, K. & Wajima, M. (1995). Chem. Pharm. Bull.43, 230–235. [PubMed]
  • Rigaku. (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Semenov, B. B. (2002). Russ. Chem. Bull.51, 357–358.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takatoshi, S. & Makoto, I. (1994). Bull. Chem. Soc. Jpn, 67, 3139–3141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography