PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2356.
Published online 2010 August 21. doi:  10.1107/S1600536810032721
PMCID: PMC3008031

2-(4-Chloro­phen­yl)acetic acid–2-{(E)-[(E)-2-(2-pyridyl­methyl­idene)hydrazin-1-yl­idene]meth­yl}pyridine (1/1)

Abstract

In the crystal of the title 1:1 adduct, C8H7ClO2·C12H10N4, the components are linked by an O—H(...)N hydrogen bond between the carb­oxy­lic acid and one of the pyridine N atoms. In the acid, the carb­oxy­lic acid group is approximately normal to [dihedral angle = 72.9 (2)°] but twisted with respect to the plane through the benzene ring [C—C—C—O torsion angle = 25.4 (5)°]. The base is roughly planar [dihedral angle between rings = 12.66 (15)°; r.m.s. deviation of the 16 non-H atoms = 0.107 Å] and the conformations about both imine bonds are E. The dimeric aggregates are linked into a supra­molecular layer in the ab plane by C—H(...)O inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007 [triangle]); Broker et al. (2008 [triangle]); Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2356-scheme1.jpg

Experimental

Crystal data

  • C8H7ClO2·C12H10N4
  • M r = 380.83
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2356-efi1.jpg
  • a = 11.740 (6) Å
  • b = 4.641 (2) Å
  • c = 33.451 (15) Å
  • V = 1822.6 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 98 K
  • 0.22 × 0.19 × 0.09 mm

Data collection

  • Rigaku Saturn724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.625, T max = 1.000
  • 7554 measured reflections
  • 4091 independent reflections
  • 3661 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.113
  • S = 1.14
  • 4091 reflections
  • 247 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1973 Friedel pairs
  • Flack parameter: 0.09 (8)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032721/hb5608sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032721/hb5608Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Co-crystallization of carboxylic acids with pyridine-containing bases has led to several structural motifs as well as salts (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al., 2010). In continuation of these studies, the co-crystallization experiment between 2-(4-chlorophenyl)acetic acid and 2-[(1E)-[(E)-2-(pyridin-2-ylmethylidene)hydrazin-1-ylidene] methyl]pyridine in a 1:1 ratio in their methanol solution was investigated. This lead to the isolation of the title 1:1 co-crystal, (I).

The constituents of (I), Fig. 1, are connected by a O–H···N hydrogen bond where the N is a pyridine-N, rather than an imine-N, as usually seen in co-crystals of this type (Broker et al., 2008), Table 1. In the acid, the dihedral angle formed between the carboxylic acid group and the benzene ring is 72.9 (2) ° and the former is twisted with respect to the plane of the benzene ring as seen in the value of the C1–C7–C8–O2 torsion angle of 25.4 (5) °. In the base, the 16 non-hydrogen atoms are almost co-planar with the r.m.s. deviation being 0.107 Å [max. deviations are 0.132 (3) Å for atom C18 and -0.153 (2) Å for the N1 atom]. The greatest twist in the base is found about the C15–C16 bond as seen in the N3–C15–C16–C17 torsion angle of 6.0 (5) °. The pyridine-N atoms are anti with respect to each other and the conformation about each imine bond [N2═C14 = 1.276 (4) Å and N3═C15 = 1.280 (4) Å] is E, again observations normally seen in related systems (Broker et al., 2008).

In the crystal packing, the dimeric aggregates held together by the O–H···N hydrogen bonds are linked into a supramolecular array in the ab plane via C–H···O contacts, Fig. 2 and Table 1. The resulting layers stack along the c direction, Fig. 3.

Experimental

Yellow crystals of (I) were isolated from the 1/1 co-crystallization of 2-[(1E)-[(E)-2-(pyridin-2-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine (Sigma-Aldrich; 0.095 mmol) and 2-(4-chlorophenyl)acetic acid (Sigma-Aldrich; 0.094 mmol) in a methanol solution, m. pt. 370 - 373 K.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of the constituents of co-crystal (I) showing displacement ellipsoids at the 50% probability level. The O–H···N hydrogen bond is shown as a dashed line.
Fig. 2.
Supramolecular layer formation in the ab plane in (I). Dimeric aggregates, connected by an O–H···N hydrogen bond (orange dashed lines) are connected via C–H···O contacts (blue dashed lines). ...
Fig. 3.
Stacking of layers along the c axis in (I). The O–H···N (orange) and C–H···O (blue) contacts are shown as dashed lines.

Crystal data

C8H7ClO2·C12H10N4F(000) = 792
Mr = 380.83Dx = 1.388 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4996 reflections
a = 11.740 (6) Åθ = 2.1–40.3°
b = 4.641 (2) ŵ = 0.23 mm1
c = 33.451 (15) ÅT = 98 K
V = 1822.6 (15) Å3Prism, yellow
Z = 40.22 × 0.19 × 0.09 mm

Data collection

Rigaku Saturn724 diffractometer4091 independent reflections
Radiation source: sealed tube3661 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = −4→15
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −4→6
Tmin = 0.625, Tmax = 1.000l = −43→42
7554 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.0265P)2 + 0.6335P] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
4091 reflectionsΔρmax = 0.28 e Å3
247 parametersΔρmin = −0.24 e Å3
2 restraintsAbsolute structure: Flack (1983), 1973 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.09 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.54028 (7)1.20255 (16)0.67877 (3)0.03461 (19)
O10.2462 (2)0.4385 (5)0.86536 (7)0.0339 (6)
H1o0.201 (3)0.542 (7)0.8788 (10)0.051*
O20.2010 (2)0.7655 (5)0.81878 (7)0.0349 (6)
N10.0916 (2)0.7320 (5)0.91096 (8)0.0273 (6)
N20.0996 (2)0.3341 (5)1.00194 (8)0.0256 (6)
N30.1807 (2)0.1275 (5)1.01538 (8)0.0249 (6)
N40.1708 (2)−0.3295 (6)1.10056 (8)0.0278 (6)
C10.3916 (3)0.5966 (7)0.77127 (10)0.0273 (7)
C20.4965 (3)0.7262 (7)0.77713 (10)0.0311 (7)
H20.53800.68640.80090.037*
C30.5427 (3)0.9140 (7)0.74890 (10)0.0308 (7)
H30.61461.00220.75330.037*
C40.4823 (3)0.9690 (6)0.71456 (10)0.0261 (7)
C50.3768 (3)0.8454 (7)0.70749 (10)0.0291 (7)
H50.33540.88720.68380.035*
C60.3332 (3)0.6583 (7)0.73615 (10)0.0297 (7)
H60.26130.57010.73160.036*
C70.3417 (3)0.4012 (7)0.80335 (10)0.0319 (8)
H7A0.30440.23410.79040.038*
H7B0.40400.32720.82040.038*
C80.2559 (3)0.5567 (7)0.82911 (10)0.0276 (7)
C90.0329 (3)0.9348 (7)0.89091 (10)0.0284 (7)
H90.05930.99340.86530.034*
C10−0.0646 (3)1.0608 (7)0.90619 (10)0.0302 (7)
H10−0.10381.20450.89140.036*
C11−0.1048 (3)0.9744 (7)0.94373 (10)0.0263 (7)
H11−0.17211.05640.95470.032*
C12−0.0443 (3)0.7666 (6)0.96461 (10)0.0255 (6)
H12−0.06960.70240.99010.031*
C130.0548 (3)0.6533 (6)0.94746 (10)0.0245 (6)
C140.1254 (3)0.4354 (6)0.96765 (9)0.0252 (7)
H140.19240.36800.95470.030*
C150.1501 (3)0.0090 (6)1.04822 (9)0.0250 (7)
H150.07990.06421.06010.030*
C160.2202 (3)−0.2089 (6)1.06803 (9)0.0220 (6)
C170.3292 (3)−0.2836 (6)1.05470 (10)0.0265 (7)
H170.3609−0.19661.03150.032*
C180.3902 (3)−0.4885 (7)1.07626 (10)0.0287 (7)
H180.4648−0.54161.06820.034*
C190.3413 (3)−0.6131 (7)1.10929 (10)0.0306 (7)
H190.3815−0.75371.12440.037*
C200.2316 (3)−0.5292 (7)1.12030 (10)0.0299 (7)
H200.1980−0.61821.14300.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0384 (4)0.0313 (4)0.0342 (4)−0.0011 (3)0.0090 (4)0.0029 (4)
O10.0357 (14)0.0361 (13)0.0299 (14)0.0045 (10)0.0061 (10)0.0038 (10)
O20.0357 (14)0.0371 (13)0.0320 (14)0.0084 (11)0.0047 (11)0.0067 (11)
N10.0269 (14)0.0267 (13)0.0281 (14)−0.0008 (11)−0.0003 (11)−0.0001 (12)
N20.0238 (13)0.0274 (13)0.0255 (14)0.0036 (10)−0.0027 (11)0.0004 (11)
N30.0215 (13)0.0276 (13)0.0256 (14)0.0015 (11)−0.0025 (10)−0.0002 (11)
N40.0273 (14)0.0276 (14)0.0285 (15)−0.0005 (12)−0.0004 (12)0.0022 (11)
C10.0304 (17)0.0263 (16)0.0254 (16)0.0081 (13)0.0056 (13)0.0002 (13)
C20.0298 (17)0.0371 (18)0.0263 (17)0.0060 (14)−0.0028 (13)0.0000 (14)
C30.0238 (16)0.0304 (16)0.038 (2)−0.0023 (13)0.0010 (14)−0.0014 (15)
C40.0313 (16)0.0210 (14)0.0259 (16)0.0018 (13)0.0058 (14)−0.0032 (12)
C50.0296 (17)0.0312 (16)0.0266 (17)0.0036 (13)−0.0031 (13)−0.0024 (14)
C60.0268 (16)0.0287 (16)0.0337 (19)−0.0007 (13)0.0005 (14)−0.0039 (14)
C70.0338 (18)0.0256 (16)0.036 (2)0.0058 (14)0.0059 (15)0.0021 (14)
C80.0264 (16)0.0275 (16)0.0288 (17)−0.0079 (13)−0.0023 (14)0.0020 (14)
C90.0296 (17)0.0298 (17)0.0256 (17)0.0004 (13)−0.0025 (13)0.0038 (14)
C100.0327 (17)0.0265 (15)0.0313 (19)0.0019 (14)−0.0106 (15)0.0006 (14)
C110.0220 (16)0.0257 (15)0.0314 (17)0.0007 (12)−0.0035 (13)0.0005 (14)
C120.0244 (15)0.0250 (15)0.0270 (16)−0.0056 (12)0.0015 (13)0.0003 (13)
C130.0235 (15)0.0226 (14)0.0273 (17)−0.0033 (12)−0.0025 (13)−0.0032 (12)
C140.0212 (15)0.0249 (16)0.0294 (17)−0.0006 (12)−0.0001 (13)−0.0020 (13)
C150.0244 (16)0.0244 (15)0.0263 (16)0.0006 (12)−0.0038 (13)−0.0026 (12)
C160.0243 (15)0.0193 (13)0.0223 (15)−0.0027 (12)−0.0019 (12)−0.0013 (12)
C170.0253 (17)0.0273 (16)0.0269 (17)−0.0021 (13)0.0002 (13)0.0018 (14)
C180.0193 (15)0.0299 (16)0.037 (2)−0.0005 (13)−0.0029 (13)−0.0037 (14)
C190.0378 (18)0.0256 (16)0.0283 (18)0.0004 (14)−0.0123 (14)0.0019 (14)
C200.0383 (19)0.0292 (16)0.0222 (16)−0.0014 (14)−0.0031 (14)0.0020 (13)

Geometric parameters (Å, °)

Cl1—C41.753 (3)C7—H7A0.9900
O1—C81.336 (4)C7—H7B0.9900
O1—H1o0.85 (3)C9—C101.383 (5)
O2—C81.214 (4)C9—H90.9500
N1—C131.346 (4)C10—C111.400 (5)
N1—C91.346 (4)C10—H100.9500
N2—C141.276 (4)C11—C121.387 (4)
N2—N31.424 (3)C11—H110.9500
N3—C151.280 (4)C12—C131.399 (4)
N4—C201.343 (4)C12—H120.9500
N4—C161.354 (4)C13—C141.472 (4)
C1—C21.385 (5)C14—H140.9500
C1—C61.391 (5)C15—C161.463 (4)
C1—C71.522 (4)C15—H150.9500
C2—C31.394 (5)C16—C171.399 (4)
C2—H20.9500C17—C181.391 (4)
C3—C41.373 (5)C17—H170.9500
C3—H30.9500C18—C191.373 (5)
C4—C51.386 (4)C18—H180.9500
C5—C61.391 (5)C19—C201.396 (5)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.509 (4)
C8—O1—H1o108 (3)C10—C9—H9118.8
C13—N1—C9118.5 (3)C9—C10—C11119.3 (3)
C14—N2—N3111.9 (3)C9—C10—H10120.4
C15—N3—N2111.9 (3)C11—C10—H10120.4
C20—N4—C16116.9 (3)C12—C11—C10118.6 (3)
C2—C1—C6118.0 (3)C12—C11—H11120.7
C2—C1—C7120.1 (3)C10—C11—H11120.7
C6—C1—C7121.9 (3)C11—C12—C13118.7 (3)
C1—C2—C3121.4 (3)C11—C12—H12120.6
C1—C2—H2119.3C13—C12—H12120.6
C3—C2—H2119.3N1—C13—C12122.5 (3)
C4—C3—C2118.8 (3)N1—C13—C14115.0 (3)
C4—C3—H3120.6C12—C13—C14122.5 (3)
C2—C3—H3120.6N2—C14—C13122.1 (3)
C3—C4—C5121.8 (3)N2—C14—H14118.9
C3—C4—Cl1119.1 (2)C13—C14—H14118.9
C5—C4—Cl1119.1 (3)N3—C15—C16121.9 (3)
C4—C5—C6118.0 (3)N3—C15—H15119.1
C4—C5—H5121.0C16—C15—H15119.1
C6—C5—H5121.0N4—C16—C17123.1 (3)
C1—C6—C5122.0 (3)N4—C16—C15114.1 (3)
C1—C6—H6119.0C17—C16—C15122.8 (3)
C5—C6—H6119.0C18—C17—C16118.3 (3)
C8—C7—C1112.0 (3)C18—C17—H17120.8
C8—C7—H7A109.2C16—C17—H17120.8
C1—C7—H7A109.2C19—C18—C17119.4 (3)
C8—C7—H7B109.2C19—C18—H18120.3
C1—C7—H7B109.2C17—C18—H18120.3
H7A—C7—H7B107.9C18—C19—C20118.7 (3)
O2—C8—O1122.7 (3)C18—C19—H19120.6
O2—C8—C7125.0 (3)C20—C19—H19120.6
O1—C8—C7112.3 (3)N4—C20—C19123.6 (3)
N1—C9—C10122.4 (3)N4—C20—H20118.2
N1—C9—H9118.8C19—C20—H20118.2
C14—N2—N3—C15−174.8 (3)C9—N1—C13—C122.4 (5)
C6—C1—C2—C30.2 (5)C9—N1—C13—C14−178.6 (3)
C7—C1—C2—C3−177.8 (3)C11—C12—C13—N1−2.1 (5)
C1—C2—C3—C4−0.3 (5)C11—C12—C13—C14179.0 (3)
C2—C3—C4—C50.6 (5)N3—N2—C14—C13−179.8 (2)
C2—C3—C4—Cl1−179.5 (2)N1—C13—C14—N2−178.1 (3)
C3—C4—C5—C6−0.9 (5)C12—C13—C14—N20.9 (5)
Cl1—C4—C5—C6179.3 (2)N2—N3—C15—C16−179.6 (3)
C2—C1—C6—C5−0.4 (5)C20—N4—C16—C170.0 (4)
C7—C1—C6—C5177.5 (3)C20—N4—C16—C15−179.3 (3)
C4—C5—C6—C10.7 (5)N3—C15—C16—N4−174.6 (3)
C2—C1—C7—C898.4 (4)N3—C15—C16—C176.0 (5)
C6—C1—C7—C8−79.5 (4)N4—C16—C17—C18−0.9 (5)
C1—C7—C8—O225.4 (5)C15—C16—C17—C18178.4 (3)
C1—C7—C8—O1−154.6 (3)C16—C17—C18—C190.9 (5)
C13—N1—C9—C10−1.1 (5)C17—C18—C19—C20−0.1 (5)
N1—C9—C10—C11−0.5 (5)C16—N4—C20—C190.8 (5)
C9—C10—C11—C120.8 (5)C18—C19—C20—N4−0.8 (5)
C10—C11—C12—C130.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.89 (3)2.734 (4)173 (3)
C9—H9···O20.952.513.215 (4)131
C10—H10···O1i0.952.573.493 (4)164

Symmetry codes: (i) x−1/2, −y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5608).

References

  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography