PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2292.
Published online 2010 August 11. doi:  10.1107/S1600536810030564
PMCID: PMC3008030

(11-Methyl­pyrido[2,3-b][1,4]benzo­diazepin-6-yl)(phen­yl)methanone

Abstract

In the title compound, C20H15N3O, the diazepine ring adopts a boat conformation. The dihedral angle between pyridine and benzene rings is 55.2 (1)°. The benzoyl phenyl ring forms dihedral angles of 49.4 (1) and 75.9 (1)°, respectively, with the pyridine and benzene rings. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of C—H(...)N hydrogen bonds.

Related literature

For general background to pyridobenzodiazepine derivatives, see: Eberlein et al. (1987 [triangle]); Horton et al. (2003 [triangle]); Shi et al. (2008 [triangle], 2010 [triangle]); Tahtaoui et al. (2004 [triangle]). For a related structure, see: Spirlet et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2292-scheme1.jpg

Experimental

Crystal data

  • C20H15N3O
  • M r = 313.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2292-efi1.jpg
  • a = 8.4442 (17) Å
  • b = 16.503 (3) Å
  • c = 11.682 (2) Å
  • β = 98.14 (3)°
  • V = 1611.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.37 × 0.30 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.389, T max = 0.431
  • 14767 measured reflections
  • 3587 independent reflections
  • 2492 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.131
  • S = 1.05
  • 3587 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030564/ci5138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030564/ci5138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (grant No. 20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

supplementary crystallographic information

Comment

Pyridobenzodiazepine derivatives possess biological and pharmacological activities (Horton et al., 2003). In most of the reported pyridobenzodiazepines amino or aryl or alkyl group is attached at the C6-position of the heterocyclic nucleus (Eberlein et al., 1987; Tahtaoui et al., 2004; Shi et al., 2008, 2010) while the attachment of a ketone group has not been reported. We report here the crysatal structure of the title compound which contains a benzoyl group at the C6-position.

Bond lengths and angles in the title molecule (Fig.1) are comparable with those observed in a related structure (Spirlet et al., 2003). The diazepine ring displays a boat conformation. The dihedral angle between pyridine and C15-C20 benzene rings is 55.2 (1)°. The benzoyl phenyl ring forms dihedral angles of 49.4 (1)° and 75.9 (1)°, respectively, with the pyridine and benzene ring of the benzodiazepine ring system.

In the crystal structure, the molecules are linked into dimers by C15—H15···N1 hydrogen bonds (Table 1).

Experimental

Polyphosphoric acid (254 mg, 0.75 mmol), N-2-methyl-N-2-phenylpyridine-2,3-diamine (100 mg, 0.5 mmol) and 2-phenylacetic acid (102 mg, 0.75 mmol) were dissolved in POCl3 (5 ml). The solution was heated at 368 K in an oil bath for 7 h and the solution was poured into ice-water (20 ml), treated with 5 N NaOH to pH 9-10, and then extracted with EtOAc (3 × 20 ml). The combined organic phase was washed with saturated NaHCO3 and brine, dried with anhydrous Na2SO4, concentrated in vacuo, and purified by flash chromatography with petroleum ether/EtOAc (10:1, v/v) as eluent to afford a mixture of 6-benzyl-11-methylpyrido[2,3-b][1,4]benzodiazepine and 6-benzoyl-11-methylpyrido[2,3-b][1,4]benzodiazepine. The mixture was dissolved in dichloromethane (5 ml), stirred for 24 h under oxygen at room temperature and 6-benzyl-11-methylpyrido[2,3-b][1,4]benzodiazepine disappeared. The reagent was concentrated in vacuo, purified by flash chromatography (yield: 140 mg, 95%) and then crystallized from dichloromethane to obtain colourless crystals of the title compound suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and treated as riding with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

C20H15N3OF(000) = 656
Mr = 313.35Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 8.4442 (17) Åθ = 3.0–27.5°
b = 16.503 (3) ŵ = 0.08 mm1
c = 11.682 (2) ÅT = 293 K
β = 98.14 (3)°Block, yellow
V = 1611.6 (6) Å30.37 × 0.30 × 0.19 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3587 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −10→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −21→21
Tmin = 0.389, Tmax = 0.431l = −14→15
14767 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2193P] where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.84497 (15)0.36871 (8)−0.05524 (17)0.0774 (5)
N20.66756 (14)0.13174 (8)0.03808 (12)0.0394 (3)
N30.99137 (15)0.19569 (8)0.04732 (13)0.0432 (3)
C11.3716 (2)0.31549 (11)−0.12859 (17)0.0529 (5)
H11.44110.2799−0.15800.063*
C21.4173 (2)0.39435 (11)−0.10549 (16)0.0497 (4)
H21.51760.4119−0.11920.060*
C31.3153 (2)0.44719 (11)−0.06219 (16)0.0500 (5)
H31.34680.5004−0.04570.060*
C41.16610 (19)0.42134 (10)−0.04322 (16)0.0464 (4)
H41.09700.4575−0.01460.056*
C51.11770 (18)0.34200 (9)−0.06626 (14)0.0387 (4)
C61.2226 (2)0.28871 (10)−0.10835 (16)0.0472 (4)
H61.19300.2350−0.12300.057*
C70.9509 (2)0.31859 (10)−0.05454 (17)0.0468 (4)
C80.90799 (18)0.23004 (9)−0.03891 (15)0.0402 (4)
C90.5167 (2)0.11410 (12)0.08085 (17)0.0526 (5)
H9A0.43390.14830.04210.079*
H9B0.52840.12410.16260.079*
H9C0.48870.05830.06600.079*
C100.9020 (2)−0.02679 (11)0.18587 (17)0.0571 (5)
H100.8833−0.07550.22170.069*
C111.0573 (2)−0.00296 (11)0.18578 (16)0.0536 (5)
H111.1418−0.03570.21770.064*
C121.0848 (2)0.07088 (11)0.13706 (15)0.0478 (4)
H121.18900.08970.13900.057*
C130.95740 (19)0.11717 (9)0.08517 (14)0.0391 (4)
C140.80223 (18)0.08588 (9)0.08663 (13)0.0376 (4)
N10.77531 (18)0.01626 (8)0.13702 (13)0.0494 (4)
C150.53710 (19)0.11522 (10)−0.16328 (16)0.0447 (4)
H150.45940.0820−0.13900.054*
C160.77505 (18)0.19642 (9)−0.12099 (14)0.0383 (4)
C170.65890 (17)0.14649 (9)−0.08261 (14)0.0358 (3)
C180.6450 (2)0.18248 (12)−0.31775 (16)0.0563 (5)
H180.64060.1941−0.39600.068*
C190.5310 (2)0.13338 (11)−0.27957 (16)0.0530 (5)
H190.44890.1122−0.33260.064*
C200.7655 (2)0.21400 (11)−0.23854 (16)0.0497 (4)
H200.84190.2476−0.26390.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0463 (7)0.0440 (8)0.1469 (16)0.0030 (6)0.0313 (8)0.0024 (8)
N20.0350 (7)0.0437 (8)0.0418 (7)−0.0032 (5)0.0136 (6)0.0033 (6)
N30.0388 (7)0.0397 (8)0.0519 (9)−0.0071 (6)0.0095 (6)−0.0011 (6)
C10.0422 (9)0.0514 (11)0.0686 (12)0.0050 (8)0.0196 (9)0.0014 (9)
C20.0360 (9)0.0570 (11)0.0557 (11)−0.0089 (7)0.0053 (8)0.0049 (8)
C30.0440 (9)0.0414 (9)0.0628 (12)−0.0123 (7)0.0009 (8)−0.0029 (8)
C40.0409 (9)0.0368 (9)0.0616 (11)0.0001 (7)0.0076 (8)−0.0049 (8)
C50.0356 (8)0.0331 (8)0.0482 (9)−0.0025 (6)0.0086 (7)0.0025 (7)
C60.0478 (9)0.0337 (9)0.0626 (11)−0.0027 (7)0.0171 (8)−0.0018 (8)
C70.0408 (9)0.0385 (9)0.0631 (11)−0.0020 (7)0.0143 (8)0.0009 (8)
C80.0360 (8)0.0366 (8)0.0513 (10)−0.0042 (6)0.0175 (7)−0.0004 (7)
C90.0435 (9)0.0603 (12)0.0586 (11)−0.0028 (8)0.0231 (9)0.0047 (9)
C100.0689 (13)0.0437 (10)0.0566 (11)−0.0028 (9)0.0016 (10)0.0092 (8)
C110.0584 (11)0.0482 (10)0.0516 (11)0.0088 (8)−0.0018 (9)−0.0011 (8)
C120.0415 (9)0.0511 (10)0.0498 (10)0.0009 (7)0.0027 (8)−0.0041 (8)
C130.0405 (8)0.0392 (9)0.0384 (8)−0.0045 (6)0.0088 (7)−0.0039 (7)
C140.0424 (9)0.0367 (8)0.0346 (8)−0.0035 (6)0.0088 (7)−0.0019 (6)
N10.0536 (9)0.0425 (8)0.0520 (9)−0.0076 (6)0.0064 (7)0.0090 (7)
C150.0399 (9)0.0382 (9)0.0556 (11)−0.0039 (7)0.0056 (8)−0.0008 (7)
C160.0383 (8)0.0357 (8)0.0432 (9)−0.0006 (6)0.0132 (7)0.0016 (7)
C170.0361 (8)0.0312 (8)0.0414 (9)0.0015 (6)0.0099 (7)−0.0003 (6)
C180.0690 (12)0.0573 (12)0.0423 (10)0.0052 (9)0.0075 (9)0.0054 (8)
C190.0570 (11)0.0507 (11)0.0477 (10)0.0012 (8)−0.0047 (9)−0.0041 (8)
C200.0555 (10)0.0461 (10)0.0498 (11)−0.0017 (8)0.0156 (9)0.0083 (8)

Geometric parameters (Å, °)

O1—C71.218 (2)C9—H9B0.96
N2—C141.416 (2)C9—H9C0.96
N2—C171.422 (2)C10—N11.342 (2)
N2—C91.462 (2)C10—C111.369 (3)
N3—C81.277 (2)C10—H100.93
N3—C131.412 (2)C11—C121.379 (3)
C1—C21.373 (2)C11—H110.93
C1—C61.385 (2)C12—C131.387 (2)
C1—H10.93C12—H120.93
C2—C31.372 (3)C13—C141.411 (2)
C2—H20.93C14—N11.325 (2)
C3—C41.377 (2)C15—C191.385 (3)
C3—H30.93C15—C171.392 (2)
C4—C51.387 (2)C15—H150.93
C4—H40.93C16—C201.395 (2)
C5—C61.387 (2)C16—C171.402 (2)
C5—C71.485 (2)C18—C201.377 (3)
C6—H60.93C18—C191.380 (3)
C7—C81.523 (2)C18—H180.93
C8—C161.477 (2)C19—H190.93
C9—H9A0.96C20—H200.93
C14—N2—C17114.46 (13)N1—C10—C11123.60 (17)
C14—N2—C9116.49 (13)N1—C10—H10118.2
C17—N2—C9116.60 (13)C11—C10—H10118.2
C8—N3—C13122.74 (13)C10—C11—C12118.14 (16)
C2—C1—C6120.38 (17)C10—C11—H11120.9
C2—C1—H1119.8C12—C11—H11120.9
C6—C1—H1119.8C11—C12—C13120.11 (16)
C3—C2—C1120.07 (16)C11—C12—H12119.9
C3—C2—H2120.0C13—C12—H12119.9
C1—C2—H2120.0C12—C13—C14117.22 (15)
C2—C3—C4119.92 (16)C12—C13—N3117.58 (14)
C2—C3—H3120.0C14—C13—N3124.75 (14)
C4—C3—H3120.0N1—C14—C13122.73 (15)
C3—C4—C5120.82 (16)N1—C14—N2117.57 (14)
C3—C4—H4119.6C13—C14—N2119.61 (14)
C5—C4—H4119.6C14—N1—C10118.11 (15)
C4—C5—C6118.82 (15)C19—C15—C17120.35 (16)
C4—C5—C7119.02 (15)C19—C15—H15119.8
C6—C5—C7121.96 (15)C17—C15—H15119.8
C1—C6—C5119.96 (16)C20—C16—C17119.45 (15)
C1—C6—H6120.0C20—C16—C8119.57 (15)
C5—C6—H6120.0C17—C16—C8120.98 (14)
O1—C7—C5121.87 (15)C15—C17—C16118.99 (15)
O1—C7—C8117.75 (15)C15—C17—N2122.48 (14)
C5—C7—C8120.38 (14)C16—C17—N2118.51 (14)
N3—C8—C16128.95 (14)C20—C18—C19119.19 (17)
N3—C8—C7113.99 (14)C20—C18—H18120.4
C16—C8—C7117.03 (14)C19—C18—H18120.4
N2—C9—H9A109.5C18—C19—C15120.88 (17)
N2—C9—H9B109.5C18—C19—H19119.6
H9A—C9—H9B109.5C15—C19—H19119.6
N2—C9—H9C109.5C18—C20—C16121.15 (17)
H9A—C9—H9C109.5C18—C20—H20119.4
H9B—C9—H9C109.5C16—C20—H20119.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.932.563.463 (2)163

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5138).

References

  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Eberlein, W. G., Trummlitz, G., Engel, W. W., Schmidt, G., Pelzer, H. & Mayer, N. (1987). J. Med. Chem.30, 1378–1382. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev.103, 893–930. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, F., Bai, X., Dang, Q. & Zhang, L. (2010). Res. Chem. Intermed.36, 253–258.
  • Shi, F., Xu, X., Zheng, L., Dang, Q. & Bai, X. (2008). J. Comb. Chem.10, 158–161. [PubMed]
  • Spirlet, M.-R., Graulich, A. & Liégeois, J.-F. (2003). Acta Cryst. E59, o1990–o1991.
  • Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J. L., Hibert, M. & Ilien, B. (2004). J. Med. Chem.47, 4300–4315. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography