PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2210.
Published online 2010 August 4. doi:  10.1107/S1600536810029533
PMCID: PMC3008026

2-Amino­pyrimidinium 4-hy­droxy­pyridinium-2,6-dicarboxyl­ate monohydrate

Abstract

In the crystal structure of the title compound, C4H6N3 +·C7H4NO5 ·H2O, inter­molecular N—H(...)N, N—H(...)O and O—H(...)O hydrogen bonds link the cations and anions into almost planar sheets parallel to (102). These hydrogen-bonded sheets are packed into the crystal with the formation of centrosymmetric voids of 68 Å3, which are filled by the water mol­ecules, each of which is disordered over four positions.

Related literature

For related structures, see: Aghabozorg et al. (2008 [triangle]); Moghimi et al. (2005 [triangle]); Hall et al. (2000 [triangle]); Lynch & Jones (2004 [triangle]); Eshtiagh-Hosseini et al. (2010 [triangle]); Smith et al. (2006a [triangle],b [triangle]). For hydrogen bonding, see: Desiraju (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2210-scheme1.jpg

Experimental

Crystal data

  • C4H6N3 +·C7H4NO5 ·H2O
  • M r = 296.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2210-efi1.jpg
  • a = 17.822 (2) Å
  • b = 12.2233 (14) Å
  • c = 12.0676 (14) Å
  • β = 103.345 (2)°
  • V = 2557.8 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 100 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.970, T max = 0.983
  • 14881 measured reflections
  • 3383 independent reflections
  • 2703 reflections with I > 2/s(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.134
  • S = 0.90
  • 3383 reflections
  • 203 parameters
  • 13 restraints
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029533/cv2745sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029533/cv2745Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Ferdowsi University of Mashhad is gratefully acknowledged by the authors for financial support.

supplementary crystallographic information

Comment

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg et al., 2008). There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines, for example, ion pairs have been reported between H2pyzdc and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a), guanidine (Smith et al., 2006b) and 2,4,6-triamine-1,3,5-triazin (Eshtiagh-Hosseini et al., 2010). However, there are few papers only concerning the 4-hydroxypyridine-2,6-dicarboxylic acid (hereafter hypydcH3). For example, ion pair including guanidine (Moghimi et al., 2005) and hydrated form of hypydcH3 (Hall et al., 2000) have been reported. In this paper, we have chosen hypydcH3 and 2-aminopyromidine (hearafter 2-apym) to obtain an ionic molecular crystal.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups was transferred to the N-ring atom of the 2-apym molecule (Fig. 1). On the other hand, an interesting feature exhibited by the crystal structure is that an intramolecular proton transfer has occurred from the other carboxyl group to the N atom of the aromatic ring of hypydcH3. The cation is hydrogen bonded to the anion with a cyclic R22(8) pattern (Fig. 1) in similar manner as reported by Lynch (Lynch & Jones, 2004). In the crystal structure, intermolecular N—H···N, N—H···O and O—H···O hydrogen bonds (Table 1) link cations and anions into almost planar sheets parallel to the (102) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 68 Å3, which are filled by the water molecules disordered between four positions each.

Experimental

The title proton transfer compound was synthesized via the reaction of hypydcH3 (0.01 g, 0.5 mmol) with 2-apym (0.01 g, 0.1 mmol) in a aqueous solution (25 ml). The solution was stirred for 3 h in 358 K, and finally a colourless solution was obtained. Prism colourless crystals were obtained after slow evaporation of the solvent at RT.

Refinement

The solvate water molecule was disordered over four positions near the inversion center with the occupancies refined to 0.292 (3), 0.249 (3), 0.236 (3) and 0.224 (3), respectively. The O(water)-bound hydrogen atoms were positioned manually with O—H 0.85-0.88 Å. The hydroxy and amino H atoms were found in a difference Fourier map. C-bound H atoms were positioned geometrically. All hydrogen atoms were refined as riding, with Uiso(H) = 1.2 - 1.5 Ueq of the parent atom.

Figures

Fig. 1.
View of the title compound with the atomic numbering and 50% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. The disordered water molecules were omitted for clarity.

Crystal data

C4H6N3+·C7H4NO5·H2OF(000) = 1232
Mr = 296.25Dx = 1.539 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2135 reflections
a = 17.822 (2) Åθ = 3–30°
b = 12.2233 (14) ŵ = 0.13 mm1
c = 12.0676 (14) ÅT = 100 K
β = 103.345 (2)°Prism, colourless
V = 2557.8 (5) Å30.20 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area detector diffractometer3383 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2/s(I)
graphiteRint = 0.031
phi and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −24→24
Tmin = 0.970, Tmax = 0.983k = −16→16
14881 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.134H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0847P)2 + 2.9446P] where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max = 0.002
203 parametersΔρmax = 0.45 e Å3
13 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N11.14962 (8)−0.04289 (11)0.20255 (13)0.0224 (3)
H1N1.16180.03080.20200.027*
O11.04750 (7)0.11863 (10)0.14699 (12)0.0282 (3)
O20.94910 (7)−0.00108 (11)0.09859 (11)0.0285 (3)
O31.08809 (7)−0.36262 (10)0.17357 (11)0.0255 (3)
H3O1.1310−0.41040.19040.031*
O41.29127 (7)0.02724 (11)0.27479 (14)0.0350 (4)
O51.33747 (7)−0.14137 (11)0.32416 (14)0.0373 (4)
C11.01849 (10)0.02443 (14)0.13234 (15)0.0239 (3)
C21.07491 (9)−0.06993 (14)0.16221 (14)0.0208 (3)
C31.05349 (9)−0.17748 (14)0.15300 (13)0.0197 (3)
H3A1.0009−0.19670.12440.024*
C41.10958 (9)−0.25973 (13)0.18601 (14)0.0197 (3)
C51.18672 (9)−0.22748 (13)0.23042 (14)0.0207 (3)
H5A1.2257−0.28100.25510.025*
C61.20497 (9)−0.11862 (13)0.23764 (15)0.0222 (3)
C71.28608 (10)−0.07533 (15)0.28376 (17)0.0290 (4)
N20.82237 (8)0.35778 (12)0.04751 (13)0.0223 (3)
N30.94887 (8)0.28765 (12)0.10759 (12)0.0206 (3)
H3N0.98070.22730.12740.025*
N40.84352 (8)0.17156 (12)0.06968 (13)0.0233 (3)
H4NA0.87550.11310.08430.028*
H4NB0.79310.16390.04250.028*
C80.87116 (9)0.27213 (13)0.07514 (14)0.0194 (3)
C90.85244 (10)0.45737 (14)0.05743 (15)0.0244 (4)
H9A0.81840.51800.03960.029*
C100.93171 (10)0.47828 (14)0.09281 (15)0.0247 (4)
H10A0.95150.55080.10040.030*
C110.97917 (9)0.38928 (15)0.11582 (14)0.0227 (3)
H11A1.03350.39900.13760.027*
O1W0.8160 (2)0.8577 (4)−0.0224 (4)0.0257 (5)0.292 (3)
H1WA0.84680.81150.01980.031*0.292 (3)
H1WB0.80550.90960.02230.031*0.292 (3)
O2W0.8104 (3)0.9291 (4)0.0129 (4)0.0257 (5)0.249 (3)
H2WA0.85440.94960.05130.031*0.249 (3)
H2WB0.81780.8757−0.02860.031*0.249 (3)
O3W0.8024 (3)0.7046 (4)0.0112 (5)0.0257 (5)0.236 (3)
H3WA0.81880.7058−0.04960.031*0.236 (3)
H3WB0.75710.6781−0.00540.031*0.236 (3)
O4W0.8561 (3)0.7918 (5)0.0081 (5)0.0257 (5)0.224 (3)
H4WA0.81320.8099−0.03540.031*0.224 (3)
H4WB0.88530.84780.01570.031*0.224 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0147 (6)0.0179 (6)0.0343 (8)0.0014 (5)0.0046 (5)−0.0010 (5)
O10.0217 (6)0.0226 (6)0.0404 (7)0.0071 (5)0.0073 (5)0.0056 (5)
O20.0163 (6)0.0317 (7)0.0376 (7)0.0079 (5)0.0064 (5)0.0096 (5)
O30.0164 (5)0.0187 (6)0.0386 (7)−0.0016 (4)0.0010 (5)0.0032 (5)
O40.0188 (6)0.0212 (6)0.0616 (9)−0.0020 (5)0.0024 (6)−0.0111 (6)
O50.0145 (6)0.0261 (7)0.0649 (10)0.0030 (5)−0.0041 (6)−0.0122 (6)
C10.0192 (8)0.0243 (8)0.0292 (8)0.0072 (6)0.0077 (6)0.0066 (6)
C20.0144 (7)0.0233 (8)0.0245 (8)0.0042 (6)0.0041 (6)0.0023 (6)
C30.0127 (7)0.0233 (8)0.0223 (7)0.0006 (6)0.0027 (5)0.0014 (6)
C40.0156 (7)0.0211 (7)0.0218 (7)−0.0011 (6)0.0031 (6)0.0014 (6)
C50.0139 (7)0.0195 (7)0.0270 (8)0.0024 (5)0.0010 (6)−0.0010 (6)
C60.0132 (7)0.0208 (7)0.0311 (8)0.0021 (6)0.0018 (6)−0.0039 (6)
C70.0151 (7)0.0234 (8)0.0460 (11)−0.0010 (6)0.0020 (7)−0.0125 (7)
N20.0139 (6)0.0213 (7)0.0301 (7)0.0010 (5)0.0018 (5)0.0020 (5)
N30.0112 (6)0.0252 (7)0.0235 (7)0.0014 (5)0.0001 (5)0.0016 (5)
N40.0119 (6)0.0206 (7)0.0351 (8)0.0015 (5)0.0008 (5)0.0035 (6)
C80.0128 (7)0.0220 (7)0.0220 (7)0.0010 (5)0.0015 (6)0.0017 (6)
C90.0179 (8)0.0225 (8)0.0314 (9)0.0018 (6)0.0025 (6)0.0023 (6)
C100.0189 (8)0.0244 (8)0.0297 (8)−0.0034 (6)0.0031 (6)0.0002 (6)
C110.0139 (7)0.0298 (8)0.0231 (8)−0.0037 (6)0.0015 (6)0.0003 (6)
O1W0.0201 (11)0.0265 (12)0.0296 (13)−0.0109 (9)0.0042 (9)−0.0058 (10)
O2W0.0201 (11)0.0265 (12)0.0296 (13)−0.0109 (9)0.0042 (9)−0.0058 (10)
O3W0.0201 (11)0.0265 (12)0.0296 (13)−0.0109 (9)0.0042 (9)−0.0058 (10)
O4W0.0201 (11)0.0265 (12)0.0296 (13)−0.0109 (9)0.0042 (9)−0.0058 (10)

Geometric parameters (Å, °)

N1—C61.348 (2)N3—C111.349 (2)
N1—C21.349 (2)N3—C81.363 (2)
N1—H1N0.9263N3—H3N0.9273
O1—C11.258 (2)N4—C81.320 (2)
O2—C11.249 (2)N4—H4NA0.9056
O3—C41.3131 (19)N4—H4NB0.8882
O3—H3O0.9466C9—C101.402 (2)
O4—C71.264 (2)C9—H9A0.9500
O5—C71.234 (2)C10—C111.367 (2)
C1—C21.518 (2)C10—H10A0.9500
C2—C31.366 (2)C11—H11A0.9500
C3—C41.409 (2)O1W—H1WA0.8664
C3—H3A0.9500O1W—H1WB0.8805
C4—C51.411 (2)O2W—H2WA0.8508
C5—C61.368 (2)O2W—H2WB0.8509
C5—H5A0.9500O3W—H3WA0.8500
C6—C71.519 (2)O3W—H3WB0.8501
N2—C91.324 (2)O4W—H4WA0.8501
N2—C81.353 (2)O4W—H4WB0.8523
C6—N1—C2122.33 (15)O4—C7—C6113.36 (15)
C6—N1—H1N121.0C9—N2—C8117.74 (14)
C2—N1—H1N116.7C11—N3—C8120.82 (14)
C4—O3—H3O111.5C11—N3—H3N120.2
O2—C1—O1128.19 (15)C8—N3—H3N119.0
O2—C1—C2116.07 (15)C8—N4—H4NA121.0
O1—C1—C2115.72 (15)C8—N4—H4NB116.8
N1—C2—C3119.94 (14)H4NA—N4—H4NB121.7
N1—C2—C1116.36 (15)N4—C8—N2119.81 (14)
C3—C2—C1123.68 (14)N4—C8—N3119.12 (14)
C2—C3—C4119.80 (14)N2—C8—N3121.07 (15)
C2—C3—H3A120.1N2—C9—C10123.61 (15)
C4—C3—H3A120.1N2—C9—H9A118.2
O3—C4—C3118.81 (14)C10—C9—H9A118.2
O3—C4—C5122.94 (14)C11—C10—C9116.72 (16)
C3—C4—C5118.25 (15)C11—C10—H10A121.6
C6—C5—C4119.49 (14)C9—C10—H10A121.6
C6—C5—H5A120.3N3—C11—C10119.98 (15)
C4—C5—H5A120.3N3—C11—H11A120.0
N1—C6—C5120.14 (15)C10—C11—H11A120.0
N1—C6—C7116.19 (15)H1WA—O1W—H1WB107.7
C5—C6—C7123.67 (14)H2WA—O2W—H2WB107.3
O5—C7—O4128.37 (16)H3WA—O3W—H3WB107.4
O5—C7—C6118.28 (16)H4WA—O4W—H4WB107.2
C6—N1—C2—C3−1.8 (3)C4—C5—C6—N10.0 (3)
C6—N1—C2—C1176.57 (15)C4—C5—C6—C7−179.86 (16)
O2—C1—C2—N1−177.73 (15)N1—C6—C7—O5175.00 (18)
O1—C1—C2—N10.9 (2)C5—C6—C7—O5−5.1 (3)
O2—C1—C2—C30.5 (2)N1—C6—C7—O4−5.0 (2)
O1—C1—C2—C3179.14 (16)C5—C6—C7—O4174.86 (17)
N1—C2—C3—C40.2 (2)C9—N2—C8—N4178.06 (16)
C1—C2—C3—C4−178.04 (15)C9—N2—C8—N3−2.6 (2)
C2—C3—C4—O3−178.17 (15)C11—N3—C8—N4−178.99 (15)
C2—C3—C4—C51.4 (2)C11—N3—C8—N21.7 (2)
O3—C4—C5—C6178.07 (16)C8—N2—C9—C101.2 (3)
C3—C4—C5—C6−1.5 (2)N2—C9—C10—C111.2 (3)
C2—N1—C6—C51.7 (3)C8—N3—C11—C100.8 (2)
C2—N1—C6—C7−178.45 (16)C9—C10—C11—N3−2.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4NA···O20.911.902.795 (2)172
N1—H1N···O10.932.262.6639 (19)105
N1—H1N···O40.932.272.618 (2)101
N4—H4NB···N2i0.892.112.990 (2)171
N3—H3N···O10.931.762.683 (2)171
O3—H3O···O4ii0.951.552.4910 (19)171

Symmetry codes: (i) −x+3/2, −y+1/2, −z; (ii) −x+5/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2745).

References

  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc 5, 184–227.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
  • Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368–o1369. [PMC free article] [PubMed]
  • Hall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448–450. [PubMed]
  • Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [PubMed]
  • Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442–o444.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089–o5091.
  • Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912–o3914.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography