PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2430.
Published online 2010 August 28. doi:  10.1107/S1600536810034094
PMCID: PMC3008015

4-Amino-N-(4,6-dimethyl­pyrimidin-2-yl)benzene­sulfonamide–benzoic acid (1/1)

Abstract

The constituents of the title co-crystal, C12H14N4O2S·C7H6O2, are connected by an eight-membered hetero-synthon {(...)NCNH(...)OCOH}, whereby the carb­oxy­lic acid forms donor and acceptor hydrogen bonds with a pyrimidine N atom and the adjacent amine, respectively. The dimeric aggregates thus formed are arranged in rows with their terminal NH2 groups forming N—H(...)O hydrogen bonds with neighbouring aggregates to form a two-dimensional array in the ac plane with an overall T-shaped topology. Layers inter­digitate along the b axis being connected by C—H(...)O, C—H(...)π and π–π [centroid–centroid distance = 3.6316 (19) Å] inter­actions.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007 [triangle]); Ellis et al. (2009 [triangle]); Arman et al. (2010 [triangle]). For related structures of carb­oxy­lic acids with 4-amino-N-(4,6-dimethyl­pyrimidin-2-yl)benzene-1-sulfonamide, see: Caira (1991 [triangle], 1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2430-scheme1.jpg

Experimental

Crystal data

  • C12H14N4O2S·C7H6O2
  • M r = 400.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2430-efi1.jpg
  • a = 15.203 (6) Å
  • b = 14.006 (5) Å
  • c = 18.015 (7) Å
  • V = 3836 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 98 K
  • 0.35 × 0.23 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.828, T max = 1
  • 30274 measured reflections
  • 4404 independent reflections
  • 4137 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.159
  • S = 1.17
  • 4404 reflections
  • 267 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034094/hg2707sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034094/hg2707Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In continuation of co-crystallization experiments of molecules related to pharmaceuticals (Broker & Tiekink, 2007; Ellis et al., 2009; Arman et al., 2010), the title co-crystal containing a 1:1 ratio of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1-sulfonamide and benzoic acid was isolated, (I). Co-crystals of the sulfonamide with various substituted benzoic acid derivatives have been investigated previously (Caira, 1991; Caira, 1992).

A single molecule of each component comprises the asymmetric unit of (I), Fig. 1. These are connected into dimeric aggregates by an eight membered hetero-synthon {···NCNH···OCOH} involving the O3-carboxylic acid-H donating to the pyrimidine-N4 and the carbonyl-O4 accepting a hydrogen bond from the adjacent N2-amine-H. Such synthons are common to related co-crystals (Caira, 1991; Caira, 1992).

In the crystal packing, the benzoic acid and pyrimidine residues lie parallel to the ac plane and are arranged in a row along the a axis as highlighted in Fig. 2. The sulfonamide-N1-amine-H atoms bridge successive dimeric aggregates of an adjacent row. This occurs by the formation of hydrogen bonds to the carbonyl-O3 of one dimeric aggregate and a second N–H···O interaction involving the sulfonamide-O1 atom of another. This establishes a two-dimensional array, Fig. 3, that has an overall T-shaped topology. As shown in Fig. 4, the global crystal packing comprises the inter-digitation of successive rows of T-shaped and inverted T-shaped molecules. The interactions between the inter-digitated residues are of the type C—H···O and C—H···π, Table 1, and π–π [Cg(N3,N4,C7—C10)···Cg(C13—C18) = 3.6316 (19) Å for i: 1/2 + x, 11/2 - y, 1 - z].

Experimental

Colourless crystals of (I) were isolated from the 1/1 co-crystallization of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzene-1- sulfonamide (ACROS, 0.11 mmol) and benzoic acid (ACROS, 0.11 mmol) in acetone; m. pt. 481–493 K.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The N– and O-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = xUeq(carrier atom), where x = 1.5 for O and x = 1.2 for N.

Figures

Fig. 1.
Molecular structure of the constituents of co-crystal (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O—H···N and N—H···O hydrogen bonds are ...
Fig. 2.
View of the supramolecular layer in projection down the b axis highlighting the rows of benzoic acid and pyrimidine residues connected via {···NCNH···OCOH} synthons (orange dashed lines). The amino-H···O ...
Fig. 3.
Side-on view of the projection shown in Fig. 2 highlighting the two-dimensional array. Colour code for hydrogen bonds and atom omissions as for Fig. 2.
Fig. 4.
Unit-cell contents of (I) shown in projection down the a axis, highlighting the inter-digitation of rows of T-shaped and inverted T-shaped molecules.

Crystal data

C12H14N4O2S·C7H6O2F(000) = 1680
Mr = 400.45Dx = 1.387 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 16577 reflections
a = 15.203 (6) Åθ = 2.3–40.5°
b = 14.006 (5) ŵ = 0.20 mm1
c = 18.015 (7) ÅT = 98 K
V = 3836 (2) Å3Block, colourless
Z = 80.35 × 0.23 × 0.10 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer4404 independent reflections
Radiation source: fine-focus sealed tube4137 reflections with I > 2σ(I)
graphiteRint = 0.073
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −19→19
Tmin = 0.828, Tmax = 1k = −16→18
30274 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.17w = 1/[σ2(Fo2) + (0.0647P)2 + 3.1388P] where P = (Fo2 + 2Fc2)/3
4404 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.41 e Å3
5 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.54508 (4)0.60684 (4)0.73129 (3)0.02568 (16)
O10.60107 (11)0.68686 (12)0.74705 (9)0.0323 (4)
O20.45840 (11)0.60392 (12)0.76309 (9)0.0310 (4)
O30.35026 (10)0.58510 (12)0.59738 (9)0.0304 (4)
O40.38399 (11)0.61521 (13)0.47864 (9)0.0334 (4)
H4O0.4377 (9)0.615 (2)0.4912 (18)0.050*
N10.72042 (15)0.23929 (16)0.79698 (14)0.0402 (5)
H1N0.7731 (10)0.2262 (19)0.7781 (16)0.048*
H2N0.6859 (14)0.1909 (14)0.8089 (16)0.048*
N20.52506 (13)0.60582 (14)0.64115 (10)0.0277 (4)
H3N0.4698 (9)0.5961 (19)0.6277 (15)0.033*
N30.67129 (12)0.61923 (13)0.60236 (10)0.0258 (4)
N40.55167 (12)0.62139 (13)0.51621 (10)0.0249 (4)
C10.68116 (15)0.32487 (17)0.78271 (12)0.0296 (5)
C20.72999 (15)0.40339 (17)0.75643 (12)0.0289 (5)
H20.79150.39650.74870.035*
C30.69052 (15)0.49023 (17)0.74168 (12)0.0279 (5)
H30.72460.54240.72410.033*
C40.59970 (14)0.50071 (16)0.75289 (12)0.0254 (4)
C50.55028 (15)0.42415 (17)0.78067 (12)0.0292 (5)
H50.48890.43150.78890.035*
C60.59063 (16)0.33828 (17)0.79608 (13)0.0317 (5)
H60.55690.28730.81600.038*
C70.58666 (14)0.61564 (15)0.58457 (12)0.0241 (4)
C80.72783 (15)0.63113 (16)0.54554 (13)0.0277 (5)
C90.69815 (16)0.63989 (17)0.47292 (13)0.0307 (5)
H90.73850.64940.43330.037*
C100.60877 (15)0.63456 (16)0.45948 (12)0.0276 (5)
C110.82379 (15)0.63460 (18)0.56559 (14)0.0342 (5)
H11A0.83010.65320.61780.051*
H11B0.85380.68140.53400.051*
H11C0.85010.57150.55810.051*
C120.57027 (17)0.64250 (19)0.38306 (13)0.0358 (5)
H12A0.50630.63510.38580.054*
H12B0.59490.59240.35130.054*
H12C0.58450.70520.36210.054*
C130.23390 (14)0.60650 (15)0.51020 (12)0.0253 (4)
C140.21086 (15)0.63324 (16)0.43783 (12)0.0268 (4)
H140.25530.64520.40190.032*
C150.12273 (15)0.64217 (17)0.41883 (13)0.0300 (5)
H150.10690.66090.37000.036*
C160.05768 (16)0.62377 (17)0.47104 (14)0.0320 (5)
H16−0.00250.62940.45760.038*
C170.08033 (16)0.59699 (18)0.54334 (14)0.0329 (5)
H170.03580.58480.57910.039*
C180.16840 (16)0.58838 (17)0.56251 (13)0.0301 (5)
H180.18410.57000.61150.036*
C190.32779 (15)0.60083 (15)0.53280 (12)0.0262 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0240 (3)0.0291 (3)0.0240 (3)0.0018 (2)−0.00015 (18)−0.00016 (19)
O10.0319 (9)0.0304 (8)0.0346 (8)−0.0011 (7)−0.0027 (7)−0.0038 (7)
O20.0234 (8)0.0397 (10)0.0299 (8)0.0061 (7)0.0035 (6)0.0030 (7)
O30.0270 (8)0.0375 (9)0.0268 (8)−0.0004 (7)−0.0025 (6)0.0013 (7)
O40.0222 (8)0.0476 (10)0.0303 (8)0.0011 (7)−0.0003 (6)0.0051 (7)
N10.0340 (11)0.0322 (11)0.0544 (13)0.0047 (9)0.0073 (10)0.0061 (10)
N20.0212 (9)0.0359 (10)0.0259 (9)−0.0016 (8)−0.0031 (7)0.0042 (7)
N30.0224 (9)0.0256 (9)0.0294 (9)−0.0004 (7)0.0004 (7)0.0013 (7)
N40.0263 (9)0.0235 (9)0.0249 (9)−0.0001 (7)0.0007 (7)0.0027 (7)
C10.0294 (11)0.0307 (11)0.0288 (10)0.0018 (9)−0.0012 (9)−0.0004 (9)
C20.0226 (10)0.0366 (12)0.0275 (10)0.0012 (9)−0.0010 (8)0.0002 (9)
C30.0240 (10)0.0329 (11)0.0266 (10)−0.0035 (9)−0.0011 (8)0.0022 (9)
C40.0263 (11)0.0276 (10)0.0225 (9)0.0005 (9)−0.0015 (8)−0.0013 (8)
C50.0245 (11)0.0336 (12)0.0295 (10)−0.0020 (9)0.0017 (8)−0.0014 (9)
C60.0284 (11)0.0303 (12)0.0363 (12)−0.0040 (9)0.0020 (9)0.0014 (9)
C70.0232 (10)0.0223 (10)0.0269 (10)−0.0009 (8)−0.0009 (8)0.0016 (8)
C80.0244 (10)0.0233 (10)0.0354 (11)−0.0019 (9)0.0027 (9)−0.0003 (9)
C90.0298 (11)0.0310 (11)0.0311 (11)−0.0032 (9)0.0070 (9)0.0021 (9)
C100.0302 (11)0.0241 (10)0.0285 (10)0.0000 (9)0.0015 (8)0.0006 (8)
C110.0239 (11)0.0374 (13)0.0413 (13)−0.0013 (10)0.0009 (9)0.0018 (10)
C120.0367 (12)0.0425 (14)0.0280 (11)−0.0014 (11)0.0012 (10)0.0046 (10)
C130.0251 (10)0.0227 (10)0.0281 (10)0.0014 (8)−0.0019 (8)−0.0029 (8)
C140.0273 (11)0.0262 (10)0.0270 (10)−0.0008 (9)0.0000 (8)−0.0008 (8)
C150.0298 (11)0.0294 (11)0.0308 (11)−0.0012 (9)−0.0075 (9)−0.0019 (9)
C160.0260 (11)0.0348 (12)0.0353 (12)0.0010 (9)−0.0030 (9)−0.0028 (10)
C170.0253 (11)0.0388 (13)0.0346 (12)−0.0002 (10)0.0016 (9)0.0009 (10)
C180.0291 (11)0.0331 (12)0.0281 (11)−0.0007 (9)−0.0012 (9)0.0008 (9)
C190.0264 (11)0.0242 (10)0.0280 (10)0.0002 (8)−0.0015 (8)−0.0006 (8)

Geometric parameters (Å, °)

S1—O11.4358 (18)C6—H60.9500
S1—O21.4375 (17)C8—C91.389 (3)
S1—N21.652 (2)C8—C111.504 (3)
S1—C41.747 (2)C9—C101.382 (3)
O3—C191.232 (3)C9—H90.9500
O4—C191.313 (3)C10—C121.500 (3)
O4—H4O0.848 (10)C11—H11A0.9800
N1—C11.364 (3)C11—H11B0.9800
N1—H1N0.889 (9)C11—H11C0.9800
N1—H2N0.88 (2)C12—H12A0.9800
N2—C71.391 (3)C12—H12B0.9800
N2—H3N0.886 (10)C12—H12C0.9800
N3—C71.327 (3)C13—C181.394 (3)
N3—C81.347 (3)C13—C141.401 (3)
N4—C71.344 (3)C13—C191.486 (3)
N4—C101.353 (3)C14—C151.388 (3)
C1—C21.409 (3)C14—H140.9500
C1—C61.410 (3)C15—C161.389 (3)
C2—C31.382 (3)C15—H150.9500
C2—H20.9500C16—C171.398 (3)
C3—C41.403 (3)C16—H160.9500
C3—H30.9500C17—C181.388 (3)
C4—C51.402 (3)C17—H170.9500
C5—C61.378 (3)C18—H180.9500
C5—H50.9500
O1—S1—O2119.14 (10)C10—C9—C8118.6 (2)
O1—S1—N2108.07 (10)C10—C9—H9120.7
O2—S1—N2102.86 (10)C8—C9—H9120.7
O1—S1—C4109.78 (11)N4—C10—C9120.4 (2)
O2—S1—C4108.84 (10)N4—C10—C12116.9 (2)
N2—S1—C4107.40 (10)C9—C10—C12122.7 (2)
C19—O4—H4O115 (2)C8—C11—H11A109.5
C1—N1—H1N120.3 (18)C8—C11—H11B109.5
C1—N1—H2N117.5 (18)H11A—C11—H11B109.5
H1N—N1—H2N117.9 (14)C8—C11—H11C109.5
C7—N2—S1126.54 (16)H11A—C11—H11C109.5
C7—N2—H3N117.0 (18)H11B—C11—H11C109.5
S1—N2—H3N116.4 (18)C10—C12—H12A109.5
C7—N3—C8116.1 (2)C10—C12—H12B109.5
C7—N4—C10116.50 (19)H12A—C12—H12B109.5
N1—C1—C2121.3 (2)C10—C12—H12C109.5
N1—C1—C6120.8 (2)H12A—C12—H12C109.5
C2—C1—C6117.9 (2)H12B—C12—H12C109.5
C3—C2—C1121.5 (2)C18—C13—C14119.9 (2)
C3—C2—H2119.2C18—C13—C19119.4 (2)
C1—C2—H2119.2C14—C13—C19120.6 (2)
C2—C3—C4119.4 (2)C15—C14—C13119.7 (2)
C2—C3—H3120.3C15—C14—H14120.2
C4—C3—H3120.3C13—C14—H14120.2
C5—C4—C3119.9 (2)C14—C15—C16120.2 (2)
C5—C4—S1118.40 (17)C14—C15—H15119.9
C3—C4—S1121.66 (17)C16—C15—H15119.9
C6—C5—C4120.1 (2)C15—C16—C17120.3 (2)
C6—C5—H5120.0C15—C16—H16119.8
C4—C5—H5120.0C17—C16—H16119.8
C5—C6—C1121.1 (2)C18—C17—C16119.5 (2)
C5—C6—H6119.5C18—C17—H17120.2
C1—C6—H6119.5C16—C17—H17120.2
N3—C7—N4127.1 (2)C17—C18—C13120.3 (2)
N3—C7—N2118.66 (19)C17—C18—H18119.8
N4—C7—N2114.27 (19)C13—C18—H18119.8
N3—C8—C9121.3 (2)O3—C19—O4123.3 (2)
N3—C8—C11116.1 (2)O3—C19—C13122.3 (2)
C9—C8—C11122.6 (2)O4—C19—C13114.41 (19)
O1—S1—N2—C747.5 (2)S1—N2—C7—N35.5 (3)
O2—S1—N2—C7174.35 (18)S1—N2—C7—N4−173.94 (16)
C4—S1—N2—C7−70.9 (2)C7—N3—C8—C90.6 (3)
N1—C1—C2—C3179.8 (2)C7—N3—C8—C11−179.64 (19)
C6—C1—C2—C3−2.1 (3)N3—C8—C9—C10−1.1 (3)
C1—C2—C3—C4−0.2 (3)C11—C8—C9—C10179.1 (2)
C2—C3—C4—C51.7 (3)C7—N4—C10—C91.1 (3)
C2—C3—C4—S1−177.03 (17)C7—N4—C10—C12−179.1 (2)
O1—S1—C4—C5145.66 (18)C8—C9—C10—N40.2 (3)
O2—S1—C4—C513.6 (2)C8—C9—C10—C12−179.6 (2)
N2—S1—C4—C5−97.07 (19)C18—C13—C14—C150.5 (3)
O1—S1—C4—C3−35.6 (2)C19—C13—C14—C15−177.2 (2)
O2—S1—C4—C3−167.67 (17)C13—C14—C15—C16−0.6 (3)
N2—S1—C4—C381.6 (2)C14—C15—C16—C170.6 (4)
C3—C4—C5—C6−0.8 (3)C15—C16—C17—C18−0.4 (4)
S1—C4—C5—C6177.91 (17)C16—C17—C18—C130.2 (4)
C4—C5—C6—C1−1.5 (4)C14—C13—C18—C17−0.2 (3)
N1—C1—C6—C5−179.0 (2)C19—C13—C18—C17177.4 (2)
C2—C1—C6—C53.0 (3)C18—C13—C19—O3−3.6 (3)
C8—N3—C7—N40.9 (3)C14—C13—C19—O3174.0 (2)
C8—N3—C7—N2−178.43 (19)C18—C13—C19—O4177.3 (2)
C10—N4—C7—N3−1.7 (3)C14—C13—C19—O4−5.1 (3)
C10—N4—C7—N2177.64 (19)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4o···N40.847 (16)1.793 (16)2.639 (3)177 (3)
N2—H3n···O30.885 (15)1.904 (16)2.787 (3)176 (3)
N1—H1n···O1i0.889 (18)2.068 (18)2.952 (3)173 (3)
N1—H2n···O3ii0.88 (2)2.31 (3)3.073 (3)144 (2)
C12—H12c···O1iii0.982.583.455 (3)149
C11—H11c···Cg1iv0.982.763.672 (3)155

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2707).

References

  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res.21, 641–648.
  • Caira, M. R. (1992). J. Crystallogr. Spectrosc. Res.22, 193–200.
  • Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography