PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1182.
Published online 2010 August 28. doi:  10.1107/S160053681003374X
PMCID: PMC3008010

Bis{1-[(o-tol­yl)imino­meth­yl]-2-naphthol­ato}copper(II)

Abstract

In the title complex, [Cu(C18H14NO)2], the CuII ion lies on a crystallographic inversion centre and is bonded to the O- and N-donor atoms of the two bidentate chelate 1-[(o-tol­yl)imino­meth­yl]-2-naphtho­late ligands in a trans arrangement. The distorted square-planar geometry about CuII has normal dimensions, with Cu—O = 1.8881 (15) Å and Cu—N = 1.9804 (17) Å.

Related literature

For general background to Schiff base complexes of copper(II), see: Adsule et al. (2006 [triangle]); Barton & Ollis (1979 [triangle]); Layer (1963 [triangle]); Ingold (1969 [triangle]); Erxleben & Schumacher (2001 [triangle]). For related structures, see: Kaitner et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1182-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H14NO)2]
  • M r = 584.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1182-efi1.jpg
  • a = 7.39342 (16) Å
  • b = 22.0666 (5) Å
  • c = 8.74653 (19) Å
  • β = 95.775 (2)°
  • V = 1419.73 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 293 K
  • 0.19 × 0.15 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.862, T max = 0.896
  • 7361 measured reflections
  • 2882 independent reflections
  • 2058 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.098
  • S = 1.05
  • 2882 reflections
  • 158 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003374X/zs2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003374X/zs2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Shandong Province (2007BS02016).

supplementary crystallographic information

Comment

Schiff bases are used as starting materials in the synthesis of important drugs (Barton et al., 1979; Layer, 1963; Ingold, 1969). For easy preparation and structural variation, a large number of complexes with schiff bases have been reported. The copper(II) complexes with schiff bases have been studied for their applications in the design and construction of new magnetic materials (Erxleben et al., 2001) and for their cellular proteasome activity (Adsule et al., 2006). We report here the crystal structure of the new copper(II) complex with the Schiff base ligand N-(o-tolyl)-2-hydroxy-1-naphthaldimine, the title compound [Cu(C18H14N O)2] (I).

The molecular structure of (I) is shown in Fig. 1. The CuII ion is four-coordinated with two O and two N donor atoms from two bidentate chelate Schiff base ligands, resulting in a square planar geometry. The discrete complex units have distorted square planar geometry with the Cu lying on a crystallographic inversion centre, the Cu1—O1 and Cu1—N1 bond lengths [1.8881 (15) and 1.9804 (17) Å respectively] being normal for this configuration. It is worth noting that the C1—N1—C12—C17 torsion angle is 55.5 (2)° in the title complex, while in the free ligand the angle is 34.1 (3)°, and this is ascribed to steric hindrance caused by the close approach in the title complex of the two ligands (Kaitner et al., 1998). The adjacent complex molecules are stacked with no significant intermolecular interactions.

Experimental

Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and N-(o-tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile (75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals of (I) started appearing after 3 days: yield, 0.667 g (85%).

Refinement

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure and atom numbering scheme for (I), with 25% probability displacement ellipsoids for non-H atoms. The A atoms are related by crystallographic inversion symmetry (code: -x + 1, -y + 1, -z + 1).

Crystal data

[Cu(C18H14NO)2]F(000) = 606
Mr = 584.14Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3786 reflections
a = 7.39342 (16) Åθ = 2.9–28.9°
b = 22.0666 (5) ŵ = 0.81 mm1
c = 8.74653 (19) ÅT = 293 K
β = 95.775 (2)°Block, red
V = 1419.73 (5) Å30.19 × 0.15 × 0.14 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2882 independent reflections
Radiation source: fine-focus sealed tube2058 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −9→9
Tmin = 0.862, Tmax = 0.896k = −27→26
7361 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.055P)2 + ] where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −1.04 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2037 (3)0.50730 (10)−0.2657 (3)0.02945 (14)
H10.25430.5301−0.34010.035*
C20.1929 (3)0.44372 (10)−0.2912 (3)0.02945 (14)
C30.1469 (3)0.40463 (10)−0.1721 (2)0.02945 (14)
C40.1653 (4)0.34085 (11)−0.1907 (3)0.0421 (6)
H40.13470.3151−0.11320.051*
C50.2260 (4)0.31703 (11)−0.3183 (3)0.0435 (6)
H50.23720.2752−0.32590.052*
C60.2735 (3)0.35406 (11)−0.4415 (3)0.0356 (5)
C70.3357 (4)0.32855 (12)−0.5738 (3)0.0445 (6)
H70.35070.2868−0.57920.053*
C80.3746 (4)0.36357 (13)−0.6944 (3)0.0505 (7)
H80.41660.3461−0.78090.061*
C90.3505 (4)0.42579 (13)−0.6864 (3)0.0461 (7)
H90.37440.4498−0.76930.055*
C100.2922 (3)0.45262 (12)−0.5584 (3)0.0388 (6)
H100.27830.4945−0.55600.047*
C110.2529 (3)0.41766 (10)−0.4298 (2)0.0302 (5)
C120.1859 (3)0.60096 (10)−0.1439 (3)0.0303 (5)
C130.1197 (3)0.63778 (11)−0.2651 (3)0.0378 (6)
H130.05410.6209−0.35100.045*
C140.1508 (4)0.69953 (12)−0.2586 (3)0.0508 (7)
H140.10670.7241−0.34030.061*
C150.2467 (4)0.72443 (12)−0.1319 (4)0.0545 (8)
H150.26720.7660−0.12720.065*
C160.3128 (4)0.68777 (12)−0.0114 (3)0.0476 (7)
H160.37900.70510.07360.057*
C170.2832 (3)0.62580 (10)−0.0135 (3)0.0351 (6)
C180.3561 (4)0.58665 (14)0.1189 (3)0.0566 (8)
H18B0.25680.57020.16830.085*
H18C0.43190.61060.19130.085*
H18A0.42630.55420.08190.085*
Cu10.00000.50000.00000.02945 (14)
N10.1508 (2)0.53716 (8)−0.1497 (2)0.02945 (14)
O10.0924 (2)0.42288 (7)−0.04412 (16)0.02945 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)
C20.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)
C30.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)
C40.0585 (17)0.0235 (14)0.0460 (15)−0.0007 (11)0.0133 (13)0.0053 (11)
C50.0587 (17)0.0217 (13)0.0508 (15)0.0025 (11)0.0088 (13)−0.0033 (11)
C60.0369 (13)0.0305 (13)0.0391 (13)0.0013 (10)0.0024 (10)−0.0061 (11)
C70.0505 (16)0.0339 (15)0.0503 (16)0.0067 (12)0.0107 (13)−0.0111 (12)
C80.0533 (17)0.0545 (19)0.0459 (15)0.0017 (14)0.0149 (13)−0.0147 (14)
C90.0548 (16)0.0491 (18)0.0363 (14)−0.0036 (13)0.0139 (12)−0.0027 (12)
C100.0470 (14)0.0310 (14)0.0386 (14)−0.0029 (11)0.0063 (11)−0.0023 (11)
C110.0308 (12)0.0274 (12)0.0322 (12)−0.0015 (10)0.0020 (9)−0.0029 (10)
C120.0325 (12)0.0227 (12)0.0372 (13)−0.0031 (9)0.0112 (10)−0.0017 (10)
C130.0453 (14)0.0309 (13)0.0379 (13)−0.0020 (11)0.0071 (11)0.0032 (11)
C140.0634 (19)0.0299 (15)0.0612 (19)0.0050 (13)0.0162 (15)0.0140 (14)
C150.069 (2)0.0215 (14)0.076 (2)−0.0047 (13)0.0246 (17)−0.0030 (14)
C160.0535 (17)0.0347 (15)0.0563 (17)−0.0109 (12)0.0137 (13)−0.0147 (13)
C170.0352 (13)0.0311 (14)0.0399 (13)−0.0042 (10)0.0086 (11)−0.0050 (11)
C180.0590 (18)0.0554 (19)0.0512 (17)−0.0095 (15)−0.0150 (14)0.0007 (15)
Cu10.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)
N10.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)
O10.0365 (2)0.0225 (2)0.0305 (2)−0.00170 (16)0.00937 (14)0.00038 (15)

Geometric parameters (Å, °)

C1—N11.303 (3)C10—H100.9300
C1—C21.422 (3)C12—C131.385 (3)
C1—H10.9300C12—C171.398 (3)
C2—C31.420 (3)C12—N11.432 (3)
C2—C111.452 (3)C13—C141.382 (3)
C3—O11.292 (2)C13—H130.9300
C3—C41.425 (3)C14—C151.369 (4)
C4—C51.351 (3)C14—H140.9300
C4—H40.9300C15—C161.379 (4)
C5—C61.424 (3)C15—H150.9300
C5—H50.9300C16—C171.385 (3)
C6—C71.406 (3)C16—H160.9300
C6—C111.417 (3)C17—C181.501 (4)
C7—C81.361 (4)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.387 (4)C18—H18A0.9600
C8—H80.9300Cu1—O1i1.8881 (15)
C9—C101.374 (3)Cu1—O11.8881 (15)
C9—H90.9300Cu1—N11.9804 (17)
C10—C111.417 (3)Cu1—N1i1.9804 (17)
N1—C1—C2127.2 (2)C13—C12—N1120.1 (2)
N1—C1—H1116.4C17—C12—N1119.4 (2)
C2—C1—H1116.4C14—C13—C12120.2 (2)
C3—C2—C1119.9 (2)C14—C13—H13119.9
C3—C2—C11119.2 (2)C12—C13—H13119.9
C1—C2—C11120.33 (19)C15—C14—C13120.0 (3)
O1—C3—C2124.4 (2)C15—C14—H14120.0
O1—C3—C4116.62 (19)C13—C14—H14120.0
C2—C3—C4119.0 (2)C14—C15—C16119.9 (3)
C5—C4—C3121.4 (2)C14—C15—H15120.1
C5—C4—H4119.3C16—C15—H15120.1
C3—C4—H4119.3C15—C16—C17121.7 (3)
C4—C5—C6122.0 (2)C15—C16—H16119.2
C4—C5—H5119.0C17—C16—H16119.1
C6—C5—H5119.0C16—C17—C12117.8 (2)
C7—C6—C11120.2 (2)C16—C17—C18120.9 (2)
C7—C6—C5121.3 (2)C12—C17—C18121.3 (2)
C11—C6—C5118.5 (2)C17—C18—H18B109.5
C8—C7—C6121.5 (2)C17—C18—H18C109.5
C8—C7—H7119.2H18B—C18—H18C109.5
C6—C7—H7119.2C17—C18—H18A109.5
C7—C8—C9119.0 (2)H18B—C18—H18A109.5
C7—C8—H8120.5H18C—C18—H18A109.5
C9—C8—H8120.5O1i—Cu1—O1180.0
C10—C9—C8121.4 (2)O1i—Cu1—N190.07 (7)
C10—C9—H9119.3O1—Cu1—N189.93 (7)
C8—C9—H9119.3O1i—Cu1—N1i89.93 (7)
C9—C10—C11121.2 (2)O1—Cu1—N1i90.07 (7)
C9—C10—H10119.4N1—Cu1—N1i180.00 (9)
C11—C10—H10119.4C1—N1—C12117.21 (18)
C6—C11—C10116.8 (2)C1—N1—Cu1122.60 (15)
C6—C11—C2119.8 (2)C12—N1—Cu1119.73 (13)
C10—C11—C2123.5 (2)C3—O1—Cu1127.52 (14)
C13—C12—C17120.5 (2)
N1—C1—C2—C3−10.7 (4)C17—C12—C13—C140.6 (4)
N1—C1—C2—C11178.0 (2)N1—C12—C13—C14178.9 (2)
C1—C2—C3—O18.4 (3)C12—C13—C14—C15−0.3 (4)
C11—C2—C3—O1179.9 (2)C13—C14—C15—C160.4 (4)
C1—C2—C3—C4−170.0 (2)C14—C15—C16—C17−0.8 (4)
C11—C2—C3—C41.5 (3)C15—C16—C17—C121.0 (4)
O1—C3—C4—C5−178.2 (2)C15—C16—C17—C18−179.9 (2)
C2—C3—C4—C50.3 (4)C13—C12—C17—C16−0.9 (3)
C3—C4—C5—C6−0.5 (4)N1—C12—C17—C16−179.3 (2)
C4—C5—C6—C7−179.7 (2)C13—C12—C17—C18−180.0 (2)
C4—C5—C6—C11−1.1 (4)N1—C12—C17—C181.7 (3)
C11—C6—C7—C8−1.1 (4)C2—C1—N1—C12176.2 (2)
C5—C6—C7—C8177.4 (3)C2—C1—N1—Cu1−11.6 (3)
C6—C7—C8—C9−0.5 (4)C13—C12—N1—C157.1 (3)
C7—C8—C9—C101.4 (4)C17—C12—N1—C1−124.5 (2)
C8—C9—C10—C11−0.5 (4)C13—C12—N1—Cu1−115.3 (2)
C7—C6—C11—C101.9 (3)C17—C12—N1—Cu163.1 (2)
C5—C6—C11—C10−176.7 (2)O1i—Cu1—N1—C1−154.08 (18)
C7—C6—C11—C2−178.5 (2)O1—Cu1—N1—C125.92 (18)
C5—C6—C11—C22.9 (3)O1i—Cu1—N1—C1217.91 (16)
C9—C10—C11—C6−1.1 (3)O1—Cu1—N1—C12−162.09 (16)
C9—C10—C11—C2179.3 (2)C2—C3—O1—Cu117.7 (3)
C3—C2—C11—C6−3.1 (3)C4—C3—O1—Cu1−163.90 (16)
C1—C2—C11—C6168.3 (2)N1—Cu1—O1—C3−29.77 (18)
C3—C2—C11—C10176.4 (2)N1i—Cu1—O1—C3150.23 (18)
C1—C2—C11—C10−12.2 (3)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2057).

References

  • Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [PubMed]
  • Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon Press.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem.12, 3039–3046.
  • Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.
  • Kaitner, B., Mestrovic, E. & Pavlovi, G. (1998). J. Chem. Crystallogr.28, 77–82.
  • Layer, R. W. (1963). Chem. Rev.63, 489–510.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography