PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): i64.
Published online 2010 August 11. doi:  10.1107/S160053681003103X
PMCID: PMC3008008

K3Gd(PO4)2

Abstract

The title compound, tripotassium gadolinium(III) bis­[ortho­phosphate(V)], was synthesized by a high-temperature solution reaction. Of the 12 atoms of the asymmetric unit (1 × Gd, 2 × P, 3 × K, 6 × O), all but two O atoms (which are in general positions) lie on mirror planes. The crystal structure features sheets of composition [Gd(PO4)2]3− which extend parallel to (100) and are built up from isolated PO4 tetra­hedra and GdO7 monocapped prisms through corner- and edge-sharing. The K+ ions, which have coordination numbers of 10, 9 and 11, help to stack the anionic sheets along [100] into a three-dimensional structure.

Related literature

For the structures, properties and applications of phosphates with general formula M 3 RE(PO4)2 (M = alkali metal, RE = rare earth metal), see: K3Lu(PO4)2 (Efremov et al., 1981 [triangle]); K3(La0.99Nd0.01)(PO4)2 (Hong & Chinn, 1976 [triangle]); Na3Ce(PO4)2 (Karpov et al., 1980 [triangle]); K3Eu(PO4)2 (Morozov et al., 2001 [triangle]); K3Sm(PO4)2 (Toumi et al., 1999 [triangle]); K3Ce(PO4)2 (Zah-Letho et al., 1988 [triangle]).

Experimental

Crystal data

  • K3Gd(PO4)2
  • M r = 464.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i64-efi1.jpg
  • a = 7.4153 (15) Å
  • b = 5.6206 (11) Å
  • c = 9.445 (2) Å
  • β = 90.723 (14)°
  • V = 393.62 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 10.43 mm−1
  • T = 293 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury70 CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.304, T max = 0.624
  • 3036 measured reflections
  • 993 independent reflections
  • 946 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.065
  • S = 1.03
  • 993 reflections
  • 80 parameters
  • Δρmax = 2.38 e Å−3
  • Δρmin = −2.68 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003103X/wm2378sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003103X/wm2378Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

supplementary crystallographic information

Comment

Inorganic phosphates with general formula M3RE(PO4)2 have been investigated in the past years due to their interesting optical properties, in which M is a alkali metal cation and RE is a trivalent rare-earth cation: K3Lu(PO4)2, space group P3 (Efremov et al., 1981); K3(La0.99Nd0.01)(PO4)2, P21/m (Hong & Chinn, 1976); Na3Ce(PO4)2, Pca21 (Karpov et al., 1980); K3Eu(PO4)2, P21/m (Morozov et al., 2001); K3Sm(PO4)2, P21/m (Toumi et al., 1999); K3Ce(PO4)2, P21/m (Zah-Letho et al., 1988). We report herein the synthesis and crystal structure of K3Gd(PO4)2 which is isotypic with all structures crystallizing in space group P21/m.

As shown in Fig. 1, the crystal structure of K3Gd(PO4)2 features two-dimensional sheets with composition [Gd(PO4)2]3- extending in the bc plane and constructed from isolated PO4 tetrahedra and isolated GdO7 monocapped prisms through corner- and edge-sharing. The K+ cations, with coordination numbers of 10 (K1), 9 (K2) and 11 (K3), are situated between these sheets and join them through coulombic action to the O2- anions, eventually forming the three-dimensional framework of K3Gd(PO4)2 (Fig. 2).

Experimental

The finely ground reagents K2CO3, Gd2O3, and NH4H2PO4 were mixed in the molar ratio K: Gd: P = 12: 1: 10, placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 573 K at a rate of 4 K h-1, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.

Refinement

The highest peak in the difference electron density map is 1.10 Å from Gd1 while the deepest hole is 0.85 Å from the same atom.

Figures

Fig. 1.
Section of the structure of K3Gd(PO4)2 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z; (ii) -1+x, y, z; (iii) 1-x, 1-y, 1-z; (iv) 1-x, 0.5+y, 1-z; (v) 1-x, -0.5+y, 1-z; ...
Fig. 2.
View of the crystal structure of K3Gd(PO4)2. K—O bonds were omitted for clarity.

Crystal data

K3Gd(PO4)2F(000) = 430
Mr = 464.49Dx = 3.919 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1264 reflections
a = 7.4153 (15) Åθ = 2.2–27.5°
b = 5.6206 (11) ŵ = 10.43 mm1
c = 9.445 (2) ÅT = 293 K
β = 90.723 (14)°Prism, colourless
V = 393.62 (14) Å30.30 × 0.10 × 0.10 mm
Z = 2

Data collection

Rigaku Mercury70 CCD diffractometer993 independent reflections
Radiation source: fine-focus sealed tube946 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.045
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −7→7
Tmin = 0.304, Tmax = 0.624l = −12→12
3036 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027w = 1/[σ2(Fo2) + (0.0356P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.03Δρmax = 2.38 e Å3
993 reflectionsΔρmin = −2.68 e Å3
80 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0314 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Gd10.00699 (3)0.25000.29011 (3)0.00731 (15)
P10.80967 (19)0.25000.57350 (15)0.0076 (3)
P20.2303 (2)0.25000.91166 (15)0.0066 (3)
K10.20438 (17)0.75000.08160 (13)0.0119 (3)
K20.50495 (17)0.25000.19219 (13)0.0142 (3)
K30.36353 (18)0.25000.59102 (14)0.0142 (3)
O11.0137 (6)0.25000.5478 (4)0.0169 (10)
O20.7564 (4)0.4735 (5)0.6577 (3)0.0123 (6)
O30.7177 (6)0.25000.4266 (4)0.0116 (9)
O40.8481 (4)−0.0269 (5)0.1623 (3)0.0129 (6)
O50.4337 (6)0.25000.8991 (5)0.0163 (9)
O60.1744 (6)0.25001.0689 (4)0.0113 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Gd10.0066 (2)0.0068 (2)0.0085 (2)0.000−0.00097 (12)0.000
P10.0065 (7)0.0086 (8)0.0076 (7)0.000−0.0012 (5)0.000
P20.0070 (7)0.0052 (7)0.0076 (6)0.000−0.0009 (5)0.000
K10.0137 (6)0.0100 (7)0.0118 (6)0.000−0.0001 (5)0.000
K20.0101 (7)0.0186 (8)0.0138 (6)0.000−0.0021 (5)0.000
K30.0126 (6)0.0136 (7)0.0165 (6)0.000−0.0002 (5)0.000
O10.007 (2)0.031 (3)0.012 (2)0.000−0.0023 (16)0.000
O20.0176 (16)0.0087 (15)0.0105 (14)−0.0023 (12)0.0007 (12)−0.0019 (11)
O30.0087 (19)0.015 (2)0.0110 (19)0.000−0.0010 (16)0.000
O40.0152 (15)0.0081 (15)0.0152 (14)−0.0033 (12)−0.0016 (12)−0.0018 (12)
O50.010 (2)0.021 (3)0.018 (2)0.0000.0017 (16)0.000
O60.013 (2)0.014 (2)0.0076 (19)0.0000.0012 (16)0.000

Geometric parameters (Å, °)

Gd1—O4i2.287 (3)K1—O4xii3.030 (3)
Gd1—O4ii2.287 (3)K1—O6xiii3.132 (4)
Gd1—O2iii2.390 (3)K2—O6v2.700 (4)
Gd1—O2iv2.390 (3)K2—O32.702 (4)
Gd1—O1i2.434 (4)K2—O5v2.812 (4)
Gd1—O6v2.444 (4)K2—O2iv2.872 (3)
Gd1—O3i2.517 (4)K2—O2iii2.872 (3)
P1—O11.535 (4)K2—O5vii2.9761 (15)
P1—O31.538 (4)K2—O5iii2.9761 (16)
P1—O21.541 (3)K2—O4vi2.999 (3)
P1—O2vi1.541 (3)K2—O42.999 (3)
P2—O51.515 (4)K3—O1i2.621 (4)
P2—O61.547 (4)K3—O3vii2.8785 (11)
P2—O4vii1.545 (3)K3—O3iii2.8785 (11)
P2—O4viii1.545 (3)K3—O2iv2.945 (3)
K1—O5iii2.687 (5)K3—O2iii2.945 (3)
K1—O2viii2.776 (3)K3—O52.949 (4)
K1—O2iii2.776 (3)K3—O33.067 (4)
K1—O4ix2.803 (3)K3—O4viii3.092 (3)
K1—O4x2.803 (3)K3—O4vii3.092 (3)
K1—O6v2.8215 (7)K3—O23.227 (3)
K1—O6xi2.8215 (7)K3—O2vi3.227 (3)
K1—O4ii3.030 (3)
O4i—Gd1—O4ii85.75 (15)O3vii—K3—O595.24 (9)
O4i—Gd1—O2iii157.36 (10)O3iii—K3—O595.24 (9)
O4ii—Gd1—O2iii92.20 (11)O2iv—K3—O5146.60 (6)
O4i—Gd1—O2iv92.20 (11)O2iii—K3—O5146.60 (6)
O4ii—Gd1—O2iv157.36 (10)O1i—K3—O3140.64 (13)
O2iii—Gd1—O2iv81.09 (14)O3vii—K3—O398.65 (8)
O4i—Gd1—O1i122.12 (9)O3iii—K3—O398.65 (8)
O4ii—Gd1—O1i122.12 (9)O2iv—K3—O381.26 (9)
O2iii—Gd1—O1i77.78 (10)O2iii—K3—O381.26 (9)
O2iv—Gd1—O1i77.78 (10)O5—K3—O3110.96 (12)
O4i—Gd1—O6v79.20 (10)O1i—K3—O4viii66.82 (11)
O4ii—Gd1—O6v79.20 (10)O3vii—K3—O4viii109.38 (10)
O2iii—Gd1—O6v78.27 (10)O3iii—K3—O4viii62.60 (10)
O2iv—Gd1—O6v78.27 (10)O2iv—K3—O4viii131.63 (9)
O1i—Gd1—O6v148.30 (14)O2iii—K3—O4viii103.66 (8)
O4i—Gd1—O3i80.43 (10)O5—K3—O4viii48.81 (9)
O4ii—Gd1—O3i80.43 (10)O3—K3—O4viii145.84 (9)
O2iii—Gd1—O3i121.51 (9)O1i—K3—O4vii66.82 (11)
O2iv—Gd1—O3i121.51 (9)O3vii—K3—O4vii62.60 (10)
O1i—Gd1—O3i59.63 (13)O3iii—K3—O4vii109.38 (10)
O6v—Gd1—O3i152.07 (14)O2iv—K3—O4vii103.66 (8)
O1—P1—O3106.5 (2)O2iii—K3—O4vii131.63 (9)
O1—P1—O2109.94 (15)O5—K3—O4vii48.81 (9)
O3—P1—O2110.60 (15)O3—K3—O4vii145.84 (9)
O1—P1—O2vi109.94 (15)O4viii—K3—O4vii47.86 (11)
O3—P1—O2vi110.60 (15)O1i—K3—O2156.87 (6)
O2—P1—O2vi109.2 (2)O3vii—K3—O2125.38 (10)
O5—P2—O6110.7 (2)O3iii—K3—O279.56 (10)
O5—P2—O4vii109.50 (16)O2iv—K3—O2128.60 (6)
O6—P2—O4vii109.28 (15)O2iii—K3—O2102.30 (8)
O5—P2—O4viii109.50 (16)O5—K3—O270.11 (10)
O6—P2—O4viii109.28 (15)O3—K3—O247.34 (8)
O4vii—P2—O4viii108.5 (2)O4viii—K3—O299.24 (8)
O5iii—K1—O2viii81.16 (11)O4vii—K3—O2118.45 (9)
O5iii—K1—O2iii81.16 (11)P2—K3—O295.98 (7)
O2viii—K1—O2iii53.82 (12)O1i—K3—O2vi156.87 (6)
O5iii—K1—O4ix100.61 (10)O3vii—K3—O2vi79.56 (10)
O2viii—K1—O4ix172.75 (9)O3iii—K3—O2vi125.38 (10)
O2iii—K1—O4ix119.30 (8)O2iv—K3—O2vi102.30 (8)
O5iii—K1—O4x100.61 (10)O2iii—K3—O2vi128.60 (6)
O2viii—K1—O4x119.30 (8)O5—K3—O2vi70.11 (10)
O2iii—K1—O4x172.75 (9)O3—K3—O2vi47.34 (8)
O4ix—K1—O4x67.45 (12)O4viii—K3—O2vi118.45 (9)
O5iii—K1—O6v94.64 (9)O4vii—K3—O2vi99.24 (8)
O2viii—K1—O6v119.72 (11)P2—K3—O2vi95.98 (7)
O2iii—K1—O6v66.06 (10)O2—K3—O2vi45.82 (11)
O4ix—K1—O6v53.27 (10)P1—O1—Gd1xiv98.6 (2)
O4x—K1—O6v120.53 (11)P1—O1—K3xiv162.0 (3)
O5iii—K1—O6xi94.64 (9)Gd1xiv—O1—K3xiv99.39 (14)
O2viii—K1—O6xi66.06 (10)P1—O2—Gd1iii116.36 (16)
O2iii—K1—O6xi119.72 (11)P1—O2—K1iii93.68 (14)
O4ix—K1—O6xi120.53 (11)Gd1iii—O2—K1iii92.46 (10)
O4x—K1—O6xi53.27 (10)P1—O2—K2iii151.02 (17)
O6v—K1—O6xi169.79 (18)Gd1iii—O2—K2iii92.56 (9)
O5iii—K1—O4ii148.85 (8)K1iii—O2—K2iii82.58 (8)
O2viii—K1—O4ii92.65 (9)P1—O2—K3iii95.46 (13)
O2iii—K1—O4ii70.83 (9)Gd1iii—O2—K3iii92.00 (9)
O4ix—K1—O4ii82.21 (9)K1iii—O2—K3iii166.79 (12)
O4x—K1—O4ii108.90 (7)K2iii—O2—K3iii84.80 (9)
O6v—K1—O4ii61.97 (10)P1—O2—K379.54 (13)
O6xi—K1—O4ii110.76 (11)Gd1iii—O2—K3162.12 (12)
O5iii—K1—O4xii148.85 (8)K1iii—O2—K394.66 (9)
O2viii—K1—O4xii70.83 (9)K2iii—O2—K372.18 (7)
O2iii—K1—O4xii92.65 (9)K3iii—O2—K377.70 (8)
O4ix—K1—O4xii108.90 (7)P1—O3—Gd1xiv95.21 (19)
O4x—K1—O4xii82.21 (9)P1—O3—K2170.6 (2)
O6v—K1—O4xii110.76 (11)Gd1xiv—O3—K294.17 (13)
O6xi—K1—O4xii61.97 (10)P1—O3—K3vii98.18 (9)
O4ii—K1—O4xii48.89 (11)Gd1xiv—O3—K3vii98.59 (8)
O5iii—K1—O6xiii156.91 (13)K2—O3—K3vii80.39 (9)
O2viii—K1—O6xiii119.07 (9)P1—O3—K3iii98.18 (9)
O2iii—K1—O6xiii119.07 (9)Gd1xiv—O3—K3iii98.59 (8)
O4ix—K1—O6xiii60.83 (9)K2—O3—K3iii80.39 (9)
O4x—K1—O6xiii60.83 (9)K3vii—O3—K3iii155.01 (17)
O6v—K1—O6xiii84.90 (9)P1—O3—K385.20 (16)
O6xi—K1—O6xiii84.90 (9)Gd1xiv—O3—K3179.59 (17)
O4ii—K1—O6xiii48.27 (9)K2—O3—K385.42 (12)
O4xii—K1—O6xiii48.27 (9)K3vii—O3—K381.34 (8)
O6v—K2—O3150.53 (13)K3iii—O3—K381.34 (8)
O6v—K2—O5v54.35 (12)P2vii—O4—Gd1xiv168.2 (2)
O3—K2—O5v155.12 (13)P2vii—O4—K1x91.81 (14)
O6v—K2—O2iv66.32 (9)Gd1xiv—O4—K1x96.97 (10)
O3—K2—O2iv89.20 (10)P2vii—O4—K298.57 (15)
O5v—K2—O2iv111.49 (10)Gd1xiv—O4—K291.67 (10)
O6v—K2—O2iii66.32 (9)K1x—O4—K271.34 (8)
O3—K2—O2iii89.20 (10)P2vii—O4—K1xv82.80 (13)
O5v—K2—O2iii111.49 (10)Gd1xiv—O4—K1xv88.25 (10)
O2iv—K2—O2iii65.51 (12)K1x—O4—K1xv97.79 (9)
O6v—K2—O5vii90.93 (9)K2—O4—K1xv169.05 (11)
O3—K2—O5vii98.48 (9)P2vii—O4—K3vii79.62 (13)
O5v—K2—O5vii75.07 (9)Gd1xiv—O4—K3vii98.11 (10)
O2iv—K2—O5vii74.84 (10)K1x—O4—K3vii141.08 (12)
O2iii—K2—O5vii139.49 (10)K2—O4—K3vii72.55 (7)
O6v—K2—O5iii90.93 (9)K1xv—O4—K3vii118.30 (10)
O3—K2—O5iii98.48 (9)P2—O5—K1iii171.6 (3)
O5v—K2—O5iii75.07 (9)P2—O5—K2xvi95.6 (2)
O2iv—K2—O5iii139.49 (10)K1iii—O5—K2xvi76.00 (12)
O2iii—K2—O5iii74.84 (10)P2—O5—K385.06 (19)
O5vii—K2—O5iii141.57 (16)K1iii—O5—K3103.34 (14)
O6v—K2—O4vi136.55 (9)K2xvi—O5—K3179.34 (17)
O3—K2—O4vi65.80 (10)P2—O5—K2vii100.29 (10)
O5v—K2—O4vi93.23 (10)K1iii—O5—K2vii82.16 (9)
O2iv—K2—O4vi154.93 (10)K2xvi—O5—K2vii104.93 (9)
O2iii—K2—O4vi110.14 (8)K3—O5—K2vii74.93 (9)
O5vii—K2—O4vi109.26 (11)P2—O5—K2iii100.29 (10)
O5iii—K2—O4vi49.45 (10)K1iii—O5—K2iii82.16 (9)
O6v—K2—O4136.55 (9)K2xvi—O5—K2iii104.93 (9)
O3—K2—O465.80 (9)K3—O5—K2iii74.93 (9)
O5v—K2—O493.23 (10)K2vii—O5—K2iii141.57 (16)
O2iv—K2—O4110.14 (8)P2—O6—Gd1xvi165.0 (3)
O2iii—K2—O4154.93 (10)P2—O6—K2xvi99.3 (2)
O5vii—K2—O449.45 (10)Gd1xvi—O6—K2xvi95.71 (14)
O5iii—K2—O4109.26 (11)P2—O6—K1xvi91.08 (8)
O4vi—K2—O462.52 (12)Gd1xvi—O6—K1xvi90.24 (8)
O1i—K3—O3vii77.59 (8)K2xvi—O6—K1xvi84.90 (9)
O1i—K3—O3iii77.59 (8)P2—O6—K1xvii91.08 (8)
O3vii—K3—O3iii155.01 (17)Gd1xvi—O6—K1xvii90.24 (8)
O1i—K3—O2iv65.64 (10)K2xvi—O6—K1xvii84.90 (9)
O3vii—K3—O2iv51.52 (10)K1xvi—O6—K1xvii169.79 (18)
O3iii—K3—O2iv114.09 (11)P2—O6—K1xiii79.26 (17)
O1i—K3—O2iii65.64 (10)Gd1xvi—O6—K1xiii85.73 (12)
O3vii—K3—O2iii114.09 (11)K2xvi—O6—K1xiii178.56 (15)
O3iii—K3—O2iii51.52 (10)K1xvi—O6—K1xiii95.10 (9)
O2iv—K3—O2iii63.70 (12)K1xvii—O6—K1xiii95.10 (9)
O1i—K3—O5108.39 (13)

Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y−1/2, −z+1; (v) x, y, z−1; (vi) x, −y+1/2, z; (vii) −x+1, −y, −z+1; (viii) −x+1, y+1/2, −z+1; (ix) −x+1, y+1/2, −z; (x) −x+1, −y+1, −z; (xi) x, y+1, z−1; (xii) x−1, y+1, z; (xiii) −x, −y+1, −z+1; (xiv) x+1, y, z; (xv) x+1, y−1, z; (xvi) x, y, z+1; (xvii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2378).

References

  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Efremov, V. A., Melnikov, P. P. & Komissarova, L. N. (1981). Coord. Chem.7, 467–471.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hong, Y. P. & Chinn, S. R. (1976). Mater. Res. Bull.11, 421–428.
  • Karpov, O. G., Pushcharovskii, D. Yu., Khomyakov, A. P., Pobedimskaya, E. A. & Belov, N. V. (1980). Kristallografiya, 25, 1135–1141.
  • Morozov, V. A., Bobylev, A. P., Gerasimova, N. V., Kirichenko, A. N., Mikhailin, V. V., Pushkina, G. Ya., Lazoryak, B. I. & Komissarova, L. N. (2001). Zh. Neorg. Khim.46, 805–813.
  • Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Toumi, M., Smiri-Dogguy, L. & Bulou, A. (1999). Eur. J. Inorg. Chem. pp. 1545–1550.
  • Zah-Letho, J. J., Houenou, P. & Eholie, R. (1988). C. R. Acad. Sci. Ser. II, 307, 1177–1179.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography