PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2414–o2415.
Published online 2010 August 28. doi:  10.1107/S1600536810033933
PMCID: PMC3008006

3-(2-Amino-5-nitro­anilino)-5,5-dimethyl­cyclo­hex-2-en-1-one 0.25-hydrate

Abstract

The asymmetric unit of the title compound, C14H17N3O3·0.25H2O, comprises two independent organic mol­ecules and a water mol­ecule lying on a crystallographic twofold rotation axis with 50% site occupancy. In both independent mol­ecules, the cyclo­hexene rings adopt envelope conformations but superposition of the two molecules shows that the flap atoms point in opposite directions. In the crystal, N—H(...)O and C—H(...)O hydrogen bonds inter­connect adjacent mol­ecules into a three-dimensional network. Weak inter­molecular π–π aromatic stacking inter­actions [centroid–centroid distances = 3.4985 (9) and 3.6630 (9) Å] are also observed.

Related literature

For general background to (2-amino­phen­yl)amino­cyclo­hexene derivatives, see: Cortés et al. (2004 [triangle]); Tonkikh et al. (2004 [triangle]). For ring conformations and puckering analysis, see: Cremer & Pople (1975 [triangle]). For related structures, see: Ghalib et al. (2010 [triangle]); Mehdi et al. (2010 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2414-scheme1.jpg

Experimental

Crystal data

  • C14H17N3O3·0.25H2O
  • M r = 279.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2414-efi1.jpg
  • a = 18.9043 (1) Å
  • b = 16.7048 (1) Å
  • c = 17.8806 (2) Å
  • β = 102.443 (1)°
  • V = 5513.93 (8) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.36 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.966, T max = 0.991
  • 58072 measured reflections
  • 8086 independent reflections
  • 5448 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.135
  • S = 1.06
  • 8086 reflections
  • 398 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033933/ci5160sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033933/ci5160Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Universiti Sains Malaysia (USM) for the University Grant (No. 1001/PTEKIND/8140152). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). SHM and RMG thank USM for the award of postdoctoral fellowships and JHG thanks USM for a USM fellowship.

supplementary crystallographic information

Comment

In the recent past many (2-aminophenyl)aminocyclohexene derivatives have been prepared by different methods (Tonkikh et al., 2004; Cortés et al., 2004). Recently we have reported the synthesis of 1,3,3-trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol by the reaction of dimedone with orthophenylenediamine in acetic acid and ethanol (Mehdi et al., 2010). In this paper we report the synthesis and crystal structure of the title compound by the reaction of dimedone with 4-nitro o-phenylenediamine in the presence of acetic acid and ethanol.

The asymmetric unit of the title compound comprises of two 3-[(2-amino-5-nitrophenyl)amino]-5,5-dimethylcyclohex-2-enone molecules (A and B) and half of a water molecule (Fig. 1). The water molecule lies on a crystallographic twofold rotation axis and the other half of the molecule is generated by the symmetry operation (-x, y, 1/2-z). In both molecules, the cyclohexene rings (C7A-C12A and C7B-C12B) adopt envelope conformations. The puckering parameters are Q = 0.443 (3) Å, θ = 126.3 (2)° and [var phi] = 295.3 (3)° for molecule A and Q = 0.448 (2) Å, θ = 51.6 (2)° and [var phi] = 122.2 (3)° for molecule B. Atoms C9A and C9B are the flap atoms of C7A-C12A and C7B-C12B cyclohexene rings, respectively, deviating from the mean planes formed through the remaining five atoms by -0.6196 (17) and 0.6286 (15) Å, respectively. The superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008) shows that the geometries of the two cyclohexene rings are different, with flap atoms in opposite directions. The bond lengths and angles are comparable to those observed in related structures (Ghalib et al., 2010; Mehdi et al., 2010).

In the crystal structure, adjacent molecules are interconnected into a three-dimensional network through N1A—H1NA···O1B, N3A—H2NA···O1A, N3A—H3NA···O2B, N1B—H1NB···O1W, N3B—H2NB···O1B, N3B—H3NB···O1A, C8A—H8AA···O2B, C8B—H8BA···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by intermolecular aromatic stacking interactions with Cg1···Cg1* = 3.6630 (19) Å and Cg2···Cg2$ 3.4985 (9) Å [symmetry codes: (*) -x, y, 3/2-z; ($) 1/2-x, 1/2-y, -z] where Cg1 and Cg2 are centroids of the C1A-C6A and C1B-C6B benzene rings, respectively.

Experimental

A mixture of 4-nitro o-phenylenediamine (0.153 g) and dimedone (0.140 g) in a 1:1 molar ratio was refluxed in a mixture of acetic acid and ethanol (1:1 v/v) for 3 h. The solid settled in the reaction mixture was filtered and crystallized in ethanol to furnish orange-coloured single crystals of the title compound (100 mg, m.p. 481 K). The melting point was taken using the Thermo Fisher digital melting point apparatus of IA9000 series.

Refinement

H atoms bound to O and N atoms were located in a difference Fourier map and refined freely [O–H = 0.83 (2) Å, range of N–H = 0.88 (2)–0.91 (2) Å]. The remaining H atoms were placed in their calculated positions, with C–H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
Fig. 3.
The crystal structure of the title compound, viewed down the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C14H17N3O3·0.25H2OF(000) = 2376
Mr = 279.81Dx = 1.348 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6071 reflections
a = 18.9043 (1) Åθ = 2.2–24.2°
b = 16.7048 (1) ŵ = 0.10 mm1
c = 17.8806 (2) ÅT = 100 K
β = 102.443 (1)°Needle, orange
V = 5513.93 (8) Å30.36 × 0.10 × 0.10 mm
Z = 16

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8086 independent reflections
Radiation source: fine-focus sealed tube5448 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −26→26
Tmin = 0.966, Tmax = 0.991k = −23→23
58072 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0547P)2 + 2.5234P] where P = (Fo2 + 2Fc2)/3
8086 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.10407 (6)0.88026 (7)1.18606 (6)0.0250 (2)
O2A−0.00894 (8)0.63989 (8)0.87992 (10)0.0560 (4)
O3A−0.10784 (7)0.66814 (8)0.79713 (7)0.0428 (3)
N1A0.12683 (7)0.89926 (8)0.92807 (7)0.0233 (3)
N2A−0.04981 (8)0.68814 (9)0.83987 (9)0.0345 (3)
N3A0.02428 (8)1.01243 (9)0.86062 (9)0.0296 (3)
C1A0.03700 (8)0.79493 (10)0.88679 (9)0.0247 (3)
H1AA0.06930.75670.91200.030*
C2A−0.03046 (9)0.77211 (10)0.84420 (9)0.0261 (3)
C3A−0.07831 (8)0.82840 (10)0.80490 (9)0.0263 (3)
H3AA−0.12210.81210.77420.032*
C4A−0.06102 (8)0.90791 (10)0.81135 (9)0.0260 (3)
H4AA−0.09400.94550.78620.031*
C5A0.00592 (8)0.93374 (9)0.85545 (8)0.0226 (3)
C6A0.05544 (8)0.87464 (9)0.89116 (8)0.0213 (3)
C7A0.15228 (8)0.90426 (9)1.00454 (8)0.0211 (3)
C8A0.22892 (8)0.93365 (10)1.02831 (9)0.0240 (3)
H8AA0.22870.99171.02910.029*
H8AB0.25570.91680.99050.029*
C9A0.26804 (8)0.90297 (10)1.10715 (9)0.0237 (3)
C10A0.21925 (8)0.91886 (10)1.16357 (9)0.0264 (3)
H10A0.23950.89141.21120.032*
H10B0.22010.97581.17450.032*
C11A0.14128 (8)0.89301 (9)1.13669 (9)0.0219 (3)
C12A0.11152 (8)0.88643 (9)1.05722 (8)0.0219 (3)
H12A0.06380.86981.04050.026*
C13A0.33996 (9)0.94785 (11)1.13176 (10)0.0305 (4)
H13A0.33081.00431.13270.046*
H13B0.37010.93701.09600.046*
H13C0.36410.93041.18190.046*
C14A0.28313 (9)0.81308 (10)1.10315 (10)0.0324 (4)
H14A0.31040.79511.15190.049*
H14B0.31040.80341.06450.049*
H14C0.23810.78451.09050.049*
O1B0.23010 (6)0.05262 (7)0.34053 (6)0.0273 (3)
O2B0.12655 (7)0.09396 (7)0.01137 (7)0.0373 (3)
O3B0.06840 (7)0.19146 (8)−0.05509 (7)0.0393 (3)
N1B0.34019 (7)0.22183 (8)0.18568 (8)0.0239 (3)
N2B0.11744 (8)0.16604 (9)−0.00325 (8)0.0299 (3)
N3B0.31623 (8)0.38637 (9)0.15638 (8)0.0262 (3)
C1B0.22746 (8)0.19536 (10)0.09317 (9)0.0247 (3)
H1BA0.23460.14070.10100.030*
C2B0.16734 (8)0.22303 (10)0.04083 (9)0.0250 (3)
C3B0.15569 (9)0.30448 (10)0.02732 (9)0.0276 (3)
H3BA0.11500.3224−0.00760.033*
C4B0.20513 (9)0.35776 (10)0.06638 (9)0.0264 (3)
H4BA0.19800.41220.05690.032*
C5B0.26681 (8)0.33224 (9)0.12075 (8)0.0234 (3)
C6B0.27680 (8)0.24929 (9)0.13365 (9)0.0231 (3)
C7B0.34175 (8)0.16652 (9)0.24196 (9)0.0220 (3)
C8B0.41600 (8)0.13787 (9)0.28068 (9)0.0243 (3)
H8BA0.45000.18160.28230.029*
H8BB0.43040.09540.25010.029*
C9B0.42129 (8)0.10673 (9)0.36246 (9)0.0243 (3)
C10B0.35921 (9)0.04699 (9)0.36023 (9)0.0259 (3)
H10C0.3693−0.00110.33390.031*
H10D0.35780.03210.41230.031*
C11B0.28568 (8)0.07847 (9)0.32102 (9)0.0237 (3)
C12B0.28102 (8)0.13614 (10)0.26177 (9)0.0252 (3)
H12B0.23570.15370.23580.030*
C13B0.41499 (10)0.17608 (11)0.41657 (10)0.0330 (4)
H13D0.41950.15590.46770.049*
H13E0.36870.20160.40020.049*
H13F0.45280.21420.41580.049*
C14B0.49440 (9)0.06534 (11)0.38949 (10)0.0324 (4)
H14D0.49970.04910.44190.049*
H14E0.53260.10180.38530.049*
H14F0.49680.01910.35820.049*
O1W0.00000.80007 (11)0.25000.0446 (5)
H1W10.0200 (13)0.8311 (14)0.2244 (13)0.055 (7)*
H1NA0.1562 (11)0.9117 (12)0.8972 (11)0.037 (5)*
H2NA−0.0127 (12)1.0468 (13)0.8460 (12)0.047 (6)*
H3NA0.0637 (11)1.0285 (12)0.8965 (11)0.037 (5)*
H1NB0.3824 (12)0.2453 (13)0.1855 (12)0.047 (6)*
H2NB0.3020 (11)0.4365 (13)0.1504 (11)0.035 (5)*
H3NB0.3455 (10)0.3735 (11)0.1998 (11)0.030 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0203 (5)0.0317 (6)0.0243 (5)−0.0009 (4)0.0073 (4)0.0030 (4)
O2A0.0471 (9)0.0294 (8)0.0832 (11)0.0007 (7)−0.0043 (8)0.0026 (7)
O3A0.0422 (8)0.0446 (8)0.0392 (7)−0.0179 (6)0.0038 (6)−0.0100 (6)
N1A0.0159 (6)0.0323 (7)0.0212 (6)−0.0010 (5)0.0031 (5)0.0040 (5)
N2A0.0322 (8)0.0323 (8)0.0385 (8)−0.0055 (6)0.0067 (7)−0.0054 (6)
N3A0.0222 (7)0.0276 (8)0.0365 (8)0.0030 (6)0.0010 (6)0.0021 (6)
C1A0.0213 (8)0.0273 (8)0.0256 (8)0.0027 (6)0.0056 (6)0.0010 (6)
C2A0.0235 (8)0.0288 (8)0.0266 (8)−0.0029 (6)0.0069 (6)−0.0049 (6)
C3A0.0180 (7)0.0374 (9)0.0228 (8)−0.0009 (6)0.0026 (6)−0.0036 (6)
C4A0.0199 (8)0.0328 (9)0.0242 (8)0.0054 (6)0.0026 (6)0.0026 (6)
C5A0.0190 (7)0.0287 (8)0.0203 (7)0.0017 (6)0.0049 (6)0.0015 (6)
C6A0.0162 (7)0.0292 (8)0.0183 (7)−0.0001 (6)0.0031 (5)−0.0004 (6)
C7A0.0167 (7)0.0223 (7)0.0234 (7)0.0013 (6)0.0022 (6)0.0017 (6)
C8A0.0169 (7)0.0301 (8)0.0252 (8)−0.0026 (6)0.0050 (6)0.0022 (6)
C9A0.0168 (7)0.0306 (8)0.0229 (7)−0.0009 (6)0.0025 (6)0.0020 (6)
C10A0.0196 (8)0.0359 (9)0.0234 (8)−0.0052 (7)0.0039 (6)−0.0014 (6)
C11A0.0183 (7)0.0221 (8)0.0256 (8)0.0019 (6)0.0054 (6)0.0019 (6)
C12A0.0151 (7)0.0243 (8)0.0259 (8)−0.0010 (6)0.0035 (6)0.0017 (6)
C13A0.0175 (8)0.0447 (10)0.0277 (8)−0.0059 (7)0.0016 (6)−0.0023 (7)
C14A0.0227 (8)0.0339 (10)0.0394 (10)0.0035 (7)0.0038 (7)0.0039 (7)
O1B0.0259 (6)0.0278 (6)0.0315 (6)−0.0050 (5)0.0136 (5)−0.0037 (5)
O2B0.0386 (7)0.0312 (7)0.0390 (7)−0.0043 (5)0.0018 (6)0.0000 (5)
O3B0.0266 (7)0.0449 (8)0.0406 (7)0.0076 (6)−0.0053 (5)−0.0044 (6)
N1B0.0192 (7)0.0240 (7)0.0290 (7)−0.0004 (5)0.0064 (5)0.0032 (5)
N2B0.0255 (7)0.0338 (8)0.0303 (7)0.0007 (6)0.0058 (6)−0.0026 (6)
N3B0.0298 (8)0.0226 (7)0.0254 (7)0.0016 (6)0.0042 (6)0.0010 (5)
C1B0.0250 (8)0.0233 (8)0.0273 (8)0.0023 (6)0.0090 (6)0.0003 (6)
C2B0.0223 (8)0.0306 (8)0.0228 (8)0.0006 (6)0.0066 (6)−0.0023 (6)
C3B0.0264 (8)0.0332 (9)0.0236 (8)0.0072 (7)0.0060 (6)0.0010 (6)
C4B0.0307 (9)0.0249 (8)0.0246 (8)0.0059 (7)0.0081 (7)0.0015 (6)
C5B0.0251 (8)0.0249 (8)0.0219 (7)0.0014 (6)0.0090 (6)−0.0011 (6)
C6B0.0211 (7)0.0259 (8)0.0233 (7)0.0026 (6)0.0068 (6)0.0008 (6)
C7B0.0216 (7)0.0196 (7)0.0255 (8)0.0014 (6)0.0066 (6)−0.0004 (6)
C8B0.0188 (7)0.0232 (8)0.0319 (8)−0.0004 (6)0.0075 (6)0.0021 (6)
C9B0.0218 (8)0.0217 (8)0.0291 (8)0.0004 (6)0.0054 (6)0.0024 (6)
C10B0.0263 (8)0.0224 (8)0.0301 (8)−0.0015 (6)0.0082 (7)0.0012 (6)
C11B0.0232 (8)0.0229 (8)0.0266 (8)−0.0034 (6)0.0090 (6)−0.0058 (6)
C12B0.0189 (7)0.0277 (8)0.0295 (8)0.0015 (6)0.0065 (6)0.0015 (6)
C13B0.0299 (9)0.0326 (9)0.0357 (9)−0.0025 (7)0.0055 (7)−0.0053 (7)
C14B0.0252 (9)0.0332 (9)0.0382 (10)0.0021 (7)0.0054 (7)0.0070 (7)
O1W0.0529 (12)0.0203 (9)0.0751 (15)0.0000.0454 (12)0.000

Geometric parameters (Å, °)

O1A—C11A1.2597 (17)O2B—N2B1.2363 (18)
O2A—N2A1.233 (2)O3B—N2B1.2363 (18)
O3A—N2A1.2400 (19)N1B—C7B1.3617 (19)
N1A—C7A1.3507 (19)N1B—C6B1.425 (2)
N1A—C6A1.4290 (19)N1B—H1NB0.89 (2)
N1A—H1NA0.89 (2)N2B—C2B1.448 (2)
N2A—C2A1.448 (2)N3B—C5B1.357 (2)
N3A—C5A1.358 (2)N3B—H2NB0.88 (2)
N3A—H2NA0.90 (2)N3B—H3NB0.88 (2)
N3A—H3NA0.91 (2)C1B—C6B1.384 (2)
C1A—C6A1.374 (2)C1B—C2B1.387 (2)
C1A—C2A1.390 (2)C1B—H1BA0.93
C1A—H1AA0.93C2B—C3B1.391 (2)
C2A—C3A1.387 (2)C3B—C4B1.368 (2)
C3A—C4A1.367 (2)C3B—H3BA0.93
C3A—H3AA0.93C4B—C5B1.413 (2)
C4A—C5A1.407 (2)C4B—H4BA0.93
C4A—H4AA0.93C5B—C6B1.411 (2)
C5A—C6A1.415 (2)C7B—C12B1.370 (2)
C7A—C12A1.372 (2)C7B—C8B1.503 (2)
C7A—C8A1.502 (2)C8B—C9B1.535 (2)
C8A—C9A1.532 (2)C8B—H8BA0.97
C8A—H8AA0.97C8B—H8BB0.97
C8A—H8AB0.97C9B—C14B1.528 (2)
C9A—C10A1.530 (2)C9B—C13B1.530 (2)
C9A—C13A1.532 (2)C9B—C10B1.534 (2)
C9A—C14A1.533 (2)C10B—C11B1.510 (2)
C10A—C11A1.511 (2)C10B—H10C0.97
C10A—H10A0.97C10B—H10D0.97
C10A—H10B0.97C11B—C12B1.420 (2)
C11A—C12A1.415 (2)C12B—H12B0.93
C12A—H12A0.93C13B—H13D0.96
C13A—H13A0.96C13B—H13E0.96
C13A—H13B0.96C13B—H13F0.96
C13A—H13C0.96C14B—H14D0.96
C14A—H14A0.96C14B—H14E0.96
C14A—H14B0.96C14B—H14F0.96
C14A—H14C0.96O1W—H1W10.83 (2)
O1B—C11B1.2531 (18)
C7A—N1A—C6A125.48 (13)C7B—N1B—C6B125.59 (13)
C7A—N1A—H1NA118.7 (13)C7B—N1B—H1NB115.2 (14)
C6A—N1A—H1NA115.8 (13)C6B—N1B—H1NB119.0 (14)
O2A—N2A—O3A122.83 (16)O2B—N2B—O3B122.74 (14)
O2A—N2A—C2A118.86 (15)O2B—N2B—C2B118.71 (14)
O3A—N2A—C2A118.29 (15)O3B—N2B—C2B118.52 (14)
C5A—N3A—H2NA115.3 (14)C5B—N3B—H2NB114.6 (13)
C5A—N3A—H3NA119.4 (12)C5B—N3B—H3NB119.5 (12)
H2NA—N3A—H3NA118.9 (19)H2NB—N3B—H3NB117.3 (18)
C6A—C1A—C2A119.23 (15)C6B—C1B—C2B119.88 (15)
C6A—C1A—H1AA120.4C6B—C1B—H1BA120.1
C2A—C1A—H1AA120.4C2B—C1B—H1BA120.1
C3A—C2A—C1A120.86 (15)C1B—C2B—C3B121.28 (15)
C3A—C2A—N2A120.02 (15)C1B—C2B—N2B119.42 (15)
C1A—C2A—N2A119.11 (15)C3B—C2B—N2B119.23 (14)
C4A—C3A—C2A119.89 (15)C4B—C3B—C2B118.85 (15)
C4A—C3A—H3AA120.1C4B—C3B—H3BA120.6
C2A—C3A—H3AA120.1C2B—C3B—H3BA120.6
C3A—C4A—C5A121.00 (15)C3B—C4B—C5B121.77 (15)
C3A—C4A—H4AA119.5C3B—C4B—H4BA119.1
C5A—C4A—H4AA119.5C5B—C4B—H4BA119.1
N3A—C5A—C4A121.40 (15)N3B—C5B—C6B121.57 (15)
N3A—C5A—C6A120.68 (14)N3B—C5B—C4B120.31 (15)
C4A—C5A—C6A117.83 (14)C6B—C5B—C4B118.05 (14)
C1A—C6A—C5A121.02 (14)C1B—C6B—C5B120.16 (14)
C1A—C6A—N1A120.51 (14)C1B—C6B—N1B120.61 (14)
C5A—C6A—N1A118.36 (14)C5B—C6B—N1B119.14 (14)
N1A—C7A—C12A123.45 (14)N1B—C7B—C12B123.83 (14)
N1A—C7A—C8A114.73 (13)N1B—C7B—C8B115.19 (13)
C12A—C7A—C8A121.79 (13)C12B—C7B—C8B120.95 (14)
C7A—C8A—C9A113.34 (12)C7B—C8B—C9B114.16 (12)
C7A—C8A—H8AA108.9C7B—C8B—H8BA108.7
C9A—C8A—H8AA108.9C9B—C8B—H8BA108.7
C7A—C8A—H8AB108.9C7B—C8B—H8BB108.7
C9A—C8A—H8AB108.9C9B—C8B—H8BB108.7
H8AA—C8A—H8AB107.7H8BA—C8B—H8BB107.6
C10A—C9A—C13A110.46 (13)C14B—C9B—C13B109.32 (14)
C10A—C9A—C8A107.98 (12)C14B—C9B—C10B110.40 (13)
C13A—C9A—C8A108.86 (13)C13B—C9B—C10B110.22 (13)
C10A—C9A—C14A110.21 (13)C14B—C9B—C8B108.88 (13)
C13A—C9A—C14A109.28 (13)C13B—C9B—C8B110.36 (13)
C8A—C9A—C14A110.03 (13)C10B—C9B—C8B107.65 (13)
C11A—C10A—C9A115.21 (13)C11B—C10B—C9B114.07 (13)
C11A—C10A—H10A108.5C11B—C10B—H10C108.7
C9A—C10A—H10A108.5C9B—C10B—H10C108.7
C11A—C10A—H10B108.5C11B—C10B—H10D108.7
C9A—C10A—H10B108.5C9B—C10B—H10D108.7
H10A—C10A—H10B107.5H10C—C10B—H10D107.6
O1A—C11A—C12A121.95 (14)O1B—C11B—C12B121.36 (15)
O1A—C11A—C10A118.62 (13)O1B—C11B—C10B119.60 (14)
C12A—C11A—C10A119.40 (13)C12B—C11B—C10B119.04 (13)
C7A—C12A—C11A120.79 (14)C7B—C12B—C11B121.56 (15)
C7A—C12A—H12A119.6C7B—C12B—H12B119.2
C11A—C12A—H12A119.6C11B—C12B—H12B119.2
C9A—C13A—H13A109.5C9B—C13B—H13D109.5
C9A—C13A—H13B109.5C9B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C9A—C13A—H13C109.5C9B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C9A—C14A—H14A109.5C9B—C14B—H14D109.5
C9A—C14A—H14B109.5C9B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C9A—C14A—H14C109.5C9B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C6A—C1A—C2A—C3A1.5 (2)C6B—C1B—C2B—C3B0.7 (2)
C6A—C1A—C2A—N2A−179.83 (14)C6B—C1B—C2B—N2B177.76 (13)
O2A—N2A—C2A—C3A−174.43 (16)O2B—N2B—C2B—C1B5.8 (2)
O3A—N2A—C2A—C3A4.0 (2)O3B—N2B—C2B—C1B−172.66 (14)
O2A—N2A—C2A—C1A6.9 (2)O2B—N2B—C2B—C3B−177.04 (14)
O3A—N2A—C2A—C1A−174.71 (14)O3B—N2B—C2B—C3B4.5 (2)
C1A—C2A—C3A—C4A−3.8 (2)C1B—C2B—C3B—C4B0.5 (2)
N2A—C2A—C3A—C4A177.60 (14)N2B—C2B—C3B—C4B−176.64 (14)
C2A—C3A—C4A—C5A2.1 (2)C2B—C3B—C4B—C5B−1.1 (2)
C3A—C4A—C5A—N3A178.34 (15)C3B—C4B—C5B—N3B177.49 (14)
C3A—C4A—C5A—C6A1.7 (2)C3B—C4B—C5B—C6B0.5 (2)
C2A—C1A—C6A—C5A2.4 (2)C2B—C1B—C6B—C5B−1.2 (2)
C2A—C1A—C6A—N1A−173.81 (13)C2B—C1B—C6B—N1B−177.79 (13)
N3A—C5A—C6A—C1A179.38 (14)N3B—C5B—C6B—C1B−176.31 (14)
C4A—C5A—C6A—C1A−3.9 (2)C4B—C5B—C6B—C1B0.6 (2)
N3A—C5A—C6A—N1A−4.4 (2)N3B—C5B—C6B—N1B0.3 (2)
C4A—C5A—C6A—N1A172.33 (13)C4B—C5B—C6B—N1B177.25 (13)
C7A—N1A—C6A—C1A−77.9 (2)C7B—N1B—C6B—C1B−50.4 (2)
C7A—N1A—C6A—C5A105.78 (17)C7B—N1B—C6B—C5B133.02 (16)
C6A—N1A—C7A—C12A−0.5 (2)C6B—N1B—C7B—C12B−7.7 (2)
C6A—N1A—C7A—C8A−178.66 (14)C6B—N1B—C7B—C8B170.43 (14)
N1A—C7A—C8A—C9A−152.68 (14)N1B—C7B—C8B—C9B154.69 (13)
C12A—C7A—C8A—C9A29.1 (2)C12B—C7B—C8B—C9B−27.1 (2)
C7A—C8A—C9A—C10A−50.05 (18)C7B—C8B—C9B—C14B169.43 (13)
C7A—C8A—C9A—C13A−170.00 (13)C7B—C8B—C9B—C13B−70.59 (17)
C7A—C8A—C9A—C14A70.27 (17)C7B—C8B—C9B—C10B49.73 (17)
C13A—C9A—C10A—C11A167.20 (14)C14B—C9B—C10B—C11B−169.64 (13)
C8A—C9A—C10A—C11A48.27 (18)C13B—C9B—C10B—C11B69.49 (17)
C14A—C9A—C10A—C11A−71.94 (18)C8B—C9B—C10B—C11B−50.92 (17)
C9A—C10A—C11A—O1A157.90 (14)C9B—C10B—C11B—O1B−151.53 (14)
C9A—C10A—C11A—C12A−24.2 (2)C9B—C10B—C11B—C12B29.4 (2)
N1A—C7A—C12A—C11A−179.87 (14)N1B—C7B—C12B—C11B−179.99 (14)
C8A—C7A—C12A—C11A−1.8 (2)C8B—C7B—C12B—C11B2.0 (2)
O1A—C11A—C12A—C7A176.94 (14)O1B—C11B—C12B—C7B177.82 (14)
C10A—C11A—C12A—C7A−0.9 (2)C10B—C11B—C12B—C7B−3.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.89 (2)1.99 (2)2.8678 (17)172 (2)
N3A—H2NA···O1Aii0.90 (2)2.09 (2)2.9874 (19)176 (2)
N3A—H3NA···O2Biii0.91 (2)2.40 (2)3.258 (2)156 (2)
N1B—H1NB···O1Wiv0.89 (2)2.45 (2)3.2651 (15)152 (2)
N3B—H2NB···O1Bv0.88 (2)2.05 (2)2.9161 (19)169 (2)
N3B—H3NB···O1Avi0.88 (2)2.06 (2)2.8963 (18)159 (2)
C8A—H8AA···O2Biii0.972.553.280 (2)132
C8B—H8BA···O1Wiv0.972.323.247 (2)160

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x, −y+2, −z+2; (iii) x, y+1, z+1; (iv) x+1/2, y−1/2, z; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5160).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cortés, E. C., Baños, M. A. & de Cortés, O. G.-M. (2004). J. Heterocycl. Chem.41, 277–280.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Ghalib, R. M., Sulaiman, O., Mehdi, S. H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1889–o1890. [PMC free article] [PubMed]
  • Mehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1832. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tonkikh, N. N., Strakovs, A., Rizhanova, K. V. & Petrova, M. V. (2004). Chem. Heterocycl. Compd, 40, 949–955.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography