PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2365.
Published online 2010 August 21. doi:  10.1107/S1600536810032666
PMCID: PMC3007996

2-(4-Bromo­phen­yl)-5-dodec­yloxy-1,3-thia­zole

Abstract

In the structure of the title compound, C21H30BrNOS, an important inter­mediate for the preparation of liquid crystal compounds, the saturated C12 chain shows a linear conformation while the benzene and thia­zole rings are essentially coplanar [dihedral angle = 4.5 (4)°]. The crystal packing shows no significant inter­molecular inter­actions.

Related literature

For technological applications of liquid crystals, see: Sonar et al. (2008 [triangle]); Srivastava et al. (2008 [triangle]). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006 [triangle]); Kauhanka & Kauhanka (2006 [triangle]); Vieira et al. (2008 [triangle]). For the properties of thia­zole derivatives, see: Gallardo et al. (2008 [triangle]); Yamashita (2010 [triangle]); Parra et al. (2001 [triangle]); Cohen et al. (2010 [triangle]). For the synthesis, see: Kiryanov et al. (2001 [triangle]). For related structures, see: Metzger (1984 [triangle]); Krapivin et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2365-scheme1.jpg

Experimental

Crystal data

  • C21H30BrNOS
  • M r = 424.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2365-efi1.jpg
  • a = 5.507 (1) Å
  • b = 46.999 (6) Å
  • c = 8.326 (1) Å
  • β = 99.68 (1)°
  • V = 2124.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 293 K
  • 0.47 × 0.47 × 0.36 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan [North et al. (1968 [triangle]) and PLATON (Spek, 2009 [triangle])] T min = 0.447, T max = 0.527
  • 4001 measured reflections
  • 3740 independent reflections
  • 1486 reflections with I > 2σ(I)
  • R int = 0.101
  • 3 standard reflections every 25 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.248
  • S = 1.05
  • 3740 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032666/zs2055sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032666/zs2055Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálize for financial assistance.

supplementary crystallographic information

Comment

Liquid crystals are fascinating materials with a broad range of applications. The most famous application of these materials is in liquid crystal displays (LCDs), but over the past year new applications have appeared, such as organic light emitting diodes (OLEDs) (Sonar et al., 2008; Srivastava et al., 2008). The molecular shape has a dominant influence on the existence of the liquid crystalline state. Over several years a large number of liquid-crystalline compounds containing heterocyclic units have been synthesized (Cristiano et al., 2006). Heterocycles are of great importance as core units in thermotropic liquid crystals due to their ability to impart lateral and/or longitudinal dipoles combined with changes in the molecular shape. The incorporation of heteroatoms can also result in large changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases, because most of the heteroatoms (S, O, and N) commonly introduced are chemically classified as more polarizable than carbon (Kauhanka & Kauhanka, 2006; Vieira et al., 2008). As part of our studies of liquid crystal derivatives of thiazoles, we now report the synthesis and structure of the title compound C21H30BrNOS (I). In (I) (Fig. 1), the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle, 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.

Experimental

Dodecyl-2-(4-bromobenzamido)acetate (4.26 g, 10 mmol) and 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent) (8.10 g, 20 mmol) was mixed with dry toluene (150 ml) and heated under reflux for 6 h. The crude product was separated by column chromatography (dichloromethane) and after evaporation of the solvent the solid was recrystallized from methanol to afford the title compound as a white solid (3.8 g, 95%): 1H NMR (CDCl3) = 7.64 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 4.03 (t, J = 6.5 Hz, 2H), 1.81 (q, J = 7.0 Hz, 2H), 1.52–1.20 (m, 18H), 0.89 (t, J = 6.8 Hz, 3H); Elemental analysis for C21H30BrNOS: calc.: C 59.43; H 7.12; N 3.30; S 7.55%. Found: C 59.42; H 7.16; N 3.43; S 8.25%.

Refinement

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with C—HAr = 0.93 Å, C—Hmethylene = 0.97 Å and C—Hmethyl = 0.96 Å and treated as riding, with Uiso = 1.2 or 1.5 times Ueq(C) for aromatic/methylene and methyl groups, respectively.

Figures

Fig. 1.
The molecular structure of the title compound with atom labelling scheme. Displacement ellipsoids are shown at the 40% probability level.

Crystal data

C21H30BrNOSF(000) = 888
Mr = 424.43Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.507 (1) Åθ = 3.8–11.5°
b = 46.999 (6) ŵ = 2.04 mm1
c = 8.326 (1) ÅT = 293 K
β = 99.68 (1)°Block, colorless
V = 2124.3 (5) Å30.47 × 0.47 × 0.36 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1486 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.101
graphiteθmax = 25.0°, θmin = 0.9°
ω–2θ scansh = −6→6
Absorption correction: ψ scan [North et al. (1968) and PLATON (Spek, 2009)]k = −55→0
Tmin = 0.447, Tmax = 0.527l = −9→0
4001 measured reflections3 standard reflections every 25 reflections
3740 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.1139P)2] where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.47 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.4151 (15)0.5923 (2)−0.0151 (9)0.045 (2)
C2−0.6447 (17)0.5928 (2)−0.1107 (10)0.055 (2)
H2−0.72900.5758−0.13570.067*
C3−0.7521 (17)0.6180 (2)−0.1703 (11)0.064 (3)
H3−0.90670.6177−0.23560.077*
C4−0.6371 (19)0.6430 (2)−0.1357 (11)0.059 (3)
C5−0.4059 (19)0.6436 (2)−0.0409 (12)0.067 (3)
H5−0.32440.6609−0.01840.081*
C6−0.2960 (16)0.6186 (2)0.0206 (10)0.057 (2)
H6−0.14170.61910.08620.068*
C7−0.3088 (14)0.5663 (2)0.0520 (9)0.050 (2)
C8−0.0587 (16)0.52788 (19)0.1924 (10)0.051 (2)
C9−0.2786 (16)0.51987 (19)0.1131 (11)0.057 (3)
H9−0.33380.50120.11290.069*
C100.0700 (15)0.48362 (19)0.2965 (10)0.053 (2)
H10A0.03490.47530.18850.063*
H10B−0.07410.48120.34800.063*
C110.2887 (16)0.46862 (19)0.3963 (11)0.056 (2)
H11A0.43320.47140.34560.067*
H11B0.32220.47680.50460.067*
C120.2390 (14)0.43752 (19)0.4087 (10)0.051 (2)
H12A0.20780.42950.29990.061*
H12B0.09130.43500.45620.061*
C130.4524 (15)0.42099 (19)0.5121 (11)0.054 (2)
H13A0.60000.42370.46470.065*
H13B0.48280.42910.62070.065*
C140.4093 (14)0.3900 (2)0.5259 (11)0.060 (3)
H14A0.37040.38210.41720.072*
H14B0.26700.38730.57880.072*
C150.6280 (16)0.37363 (19)0.6215 (11)0.057 (2)
H15A0.77140.37740.57130.069*
H15B0.66180.38130.73110.069*
C160.6002 (16)0.3421 (2)0.6340 (11)0.059 (3)
H16A0.55170.33430.52530.071*
H16B0.46860.33810.69490.071*
C170.8306 (16)0.32698 (18)0.7151 (12)0.063 (3)
H17A0.96270.33150.65550.075*
H17B0.87670.33460.82440.075*
C180.8118 (16)0.2954 (2)0.7266 (11)0.068 (3)
H18A0.76130.28770.61800.082*
H18B0.68480.29080.79010.082*
C191.0484 (16)0.28141 (19)0.8031 (11)0.066 (3)
H19A1.09430.28860.91330.079*
H19B1.17680.28700.74270.079*
C201.0392 (17)0.2490 (2)0.8096 (13)0.071 (3)
H20A0.91860.24350.87610.086*
H20B0.98290.24190.70030.086*
C211.2787 (18)0.2351 (2)0.8758 (17)0.104 (4)
H21A1.34740.24380.97770.156*
H21B1.39060.23740.79990.156*
H21C1.25210.21520.89230.156*
N1−0.4170 (14)0.54122 (16)0.0321 (9)0.061 (2)
O10.1218 (10)0.51313 (14)0.2839 (7)0.0612 (17)
S1−0.0169 (4)0.56399 (5)0.1715 (3)0.0572 (7)
Br1−0.7883 (2)0.67797 (3)−0.20868 (16)0.0951 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.037 (5)0.061 (7)0.033 (5)−0.002 (5)0.000 (4)0.001 (4)
C20.061 (6)0.053 (7)0.055 (6)−0.012 (5)0.014 (5)0.007 (5)
C30.048 (6)0.071 (8)0.071 (7)0.001 (6)0.001 (5)−0.002 (6)
C40.067 (7)0.063 (7)0.048 (6)0.013 (6)0.017 (5)0.005 (5)
C50.071 (7)0.047 (7)0.083 (7)0.002 (5)0.011 (6)−0.007 (5)
C60.046 (5)0.048 (6)0.072 (7)0.002 (5)−0.002 (5)0.005 (5)
C70.037 (5)0.074 (7)0.034 (5)0.007 (5)−0.006 (4)0.012 (5)
C80.045 (5)0.047 (6)0.054 (6)−0.001 (5)−0.017 (5)0.002 (5)
C90.059 (6)0.036 (6)0.068 (6)0.000 (5)−0.016 (5)0.017 (5)
C100.053 (6)0.045 (6)0.056 (6)−0.003 (5)−0.001 (5)0.013 (5)
C110.059 (6)0.053 (7)0.056 (6)0.013 (5)0.008 (5)0.004 (5)
C120.043 (5)0.056 (6)0.051 (6)0.006 (5)0.000 (4)0.002 (5)
C130.049 (6)0.056 (7)0.054 (6)0.001 (5)0.002 (5)0.007 (5)
C140.031 (5)0.079 (8)0.066 (6)−0.012 (5)−0.005 (5)0.003 (5)
C150.051 (6)0.048 (7)0.071 (6)0.011 (5)0.003 (5)0.009 (5)
C160.046 (6)0.076 (8)0.054 (6)0.015 (5)0.006 (5)0.006 (5)
C170.051 (6)0.053 (7)0.082 (7)0.006 (5)0.003 (5)0.013 (5)
C180.057 (6)0.058 (7)0.081 (7)0.005 (5)−0.010 (5)0.004 (6)
C190.061 (6)0.047 (7)0.085 (7)−0.001 (5)−0.003 (5)0.003 (5)
C200.070 (7)0.050 (7)0.090 (8)−0.005 (5)0.002 (6)0.016 (6)
C210.074 (8)0.054 (8)0.171 (12)0.015 (6)−0.017 (8)0.031 (8)
N10.060 (5)0.037 (5)0.079 (6)−0.016 (4)−0.010 (4)0.003 (4)
O10.050 (4)0.058 (5)0.069 (4)−0.012 (3)−0.010 (3)0.009 (3)
S10.0479 (13)0.0455 (15)0.0700 (16)−0.0069 (12)−0.0138 (12)0.0077 (12)
Br10.1110 (11)0.0733 (9)0.1017 (10)0.0372 (7)0.0199 (7)0.0262 (7)

Geometric parameters (Å, °)

C1—C21.376 (11)C12—H12B0.9700
C1—C61.407 (12)C13—C141.481 (12)
C1—C71.428 (12)C13—H13A0.9700
C2—C31.381 (12)C13—H13B0.9700
C2—H20.9300C14—C151.535 (11)
C3—C41.343 (13)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.381 (13)C15—C161.497 (12)
C4—Br11.895 (9)C15—H15A0.9700
C5—C61.383 (12)C15—H15B0.9700
C5—H50.9300C16—C171.510 (11)
C6—H60.9300C16—H16A0.9700
C7—N11.317 (11)C16—H16B0.9700
C7—S11.746 (8)C17—C181.490 (12)
C8—C91.332 (11)C17—H17A0.9700
C8—O11.339 (9)C17—H17B0.9700
C8—S11.725 (9)C18—C191.503 (11)
C9—N11.367 (10)C18—H18A0.9700
C9—H90.9300C18—H18B0.9700
C10—O11.423 (10)C19—C201.525 (12)
C10—C111.517 (11)C19—H19A0.9700
C10—H10A0.9700C19—H19B0.9700
C10—H10B0.9700C20—C211.492 (12)
C11—C121.494 (12)C20—H20A0.9700
C11—H11A0.9700C20—H20B0.9700
C11—H11B0.9700C21—H21A0.9600
C12—C131.544 (11)C21—H21B0.9600
C12—H12A0.9700C21—H21C0.9600
C2—C1—C6117.2 (8)C13—C14—C15114.3 (7)
C2—C1—C7121.1 (8)C13—C14—H14A108.7
C6—C1—C7121.6 (8)C15—C14—H14A108.7
C1—C2—C3121.2 (9)C13—C14—H14B108.7
C1—C2—H2119.4C15—C14—H14B108.7
C3—C2—H2119.4H14A—C14—H14B107.6
C4—C3—C2121.1 (9)C16—C15—C14117.0 (8)
C4—C3—H3119.4C16—C15—H15A108.1
C2—C3—H3119.4C14—C15—H15A108.1
C3—C4—C5119.8 (9)C16—C15—H15B108.1
C3—C4—Br1121.6 (8)C14—C15—H15B108.1
C5—C4—Br1118.6 (8)H15A—C15—H15B107.3
C4—C5—C6119.8 (9)C15—C16—C17114.1 (8)
C4—C5—H5120.1C15—C16—H16A108.7
C6—C5—H5120.1C17—C16—H16A108.7
C5—C6—C1120.7 (8)C15—C16—H16B108.7
C5—C6—H6119.6C17—C16—H16B108.7
C1—C6—H6119.6H16A—C16—H16B107.6
N1—C7—C1124.7 (7)C18—C17—C16115.7 (8)
N1—C7—S1111.8 (7)C18—C17—H17A108.4
C1—C7—S1123.6 (7)C16—C17—H17A108.4
C9—C8—O1131.4 (9)C18—C17—H17B108.4
C9—C8—S1110.7 (7)C16—C17—H17B108.4
O1—C8—S1117.9 (6)H17A—C17—H17B107.4
C8—C9—N1115.0 (8)C17—C18—C19113.5 (8)
C8—C9—H9122.5C17—C18—H18A108.9
N1—C9—H9122.5C19—C18—H18A108.9
O1—C10—C11110.1 (7)C17—C18—H18B108.9
O1—C10—H10A109.7C19—C18—H18B108.9
C11—C10—H10A109.7H18A—C18—H18B107.7
O1—C10—H10B109.6C18—C19—C20114.9 (8)
C11—C10—H10B109.7C18—C19—H19A108.5
H10A—C10—H10B108.2C20—C19—H19A108.5
C12—C11—C10110.8 (7)C18—C19—H19B108.5
C12—C11—H11A109.5C20—C19—H19B108.5
C10—C11—H11A109.5H19A—C19—H19B107.5
C12—C11—H11B109.5C21—C20—C19114.7 (8)
C10—C11—H11B109.5C21—C20—H20A108.6
H11A—C11—H11B108.1C19—C20—H20A108.6
C11—C12—C13113.6 (7)C21—C20—H20B108.6
C11—C12—H12A108.9C19—C20—H20B108.6
C13—C12—H12A108.9H20A—C20—H20B107.6
C11—C12—H12B108.9C20—C21—H21A109.5
C13—C12—H12B108.9C20—C21—H21B109.5
H12A—C12—H12B107.7H21A—C21—H21B109.5
C14—C13—C12114.9 (7)C20—C21—H21C109.5
C14—C13—H13A108.5H21A—C21—H21C109.5
C12—C13—H13A108.5H21B—C21—H21C109.5
C14—C13—H13B108.5C7—N1—C9113.0 (7)
C12—C13—H13B108.5C8—O1—C10114.0 (6)
H13A—C13—H13B107.5C8—S1—C789.5 (4)
C6—C1—C2—C30.6 (13)C11—C12—C13—C14−179.7 (8)
C7—C1—C2—C3177.3 (8)C12—C13—C14—C15177.0 (7)
C1—C2—C3—C4−0.6 (14)C13—C14—C15—C16−177.5 (8)
C2—C3—C4—C50.9 (14)C14—C15—C16—C17174.3 (8)
C2—C3—C4—Br1−177.2 (7)C15—C16—C17—C18−178.7 (9)
C3—C4—C5—C6−1.3 (14)C16—C17—C18—C19178.0 (8)
Br1—C4—C5—C6176.9 (7)C17—C18—C19—C20−177.2 (9)
C4—C5—C6—C11.3 (14)C18—C19—C20—C21176.3 (9)
C2—C1—C6—C5−0.9 (13)C1—C7—N1—C9−178.2 (8)
C7—C1—C6—C5−177.6 (8)S1—C7—N1—C91.8 (10)
C2—C1—C7—N1−1.1 (13)C8—C9—N1—C7−2.0 (12)
C6—C1—C7—N1175.5 (8)C9—C8—O1—C101.0 (13)
C2—C1—C7—S1178.9 (6)S1—C8—O1—C10179.1 (6)
C6—C1—C7—S1−4.5 (12)C11—C10—O1—C8177.7 (7)
O1—C8—C9—N1179.5 (9)C9—C8—S1—C7−0.2 (7)
S1—C8—C9—N11.2 (11)O1—C8—S1—C7−178.7 (7)
O1—C10—C11—C12−179.2 (7)N1—C7—S1—C8−0.9 (7)
C10—C11—C12—C13−178.7 (7)C1—C7—S1—C8179.0 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2055).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Cohen, F., Koehler, M. F. T., Bergeron, P., Elliott, L. O., Flygare, J. A., Franklin, M. C., Gazzard, L., Keteltas, S. F., Lau, K., Ly, C., Tsui, V. & Fairbrother, W. J. (2010). Bioorg. Med. Chem. Lett.7, 2229–2233. [PubMed]
  • Cristiano, R., Santos, D. M. P. O., Conte, G. & Gallardo, H. (2006). Liq. Cryst.33, 997–1003.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Gallardo, H., Bortoluzzi, A. J. & Santos, D. M. P. O. (2008). Liq. Cryst.35, 719–725.
  • Kauhanka, M. U. & Kauhanka, M. M. (2006). Liq. Cryst.33, 121–127.
  • Kiryanov, A. A., Sampson, P. & Seed, A. J. (2001). J. Org. Chem.23, 7925–7929. [PubMed]
  • Krapivin, G. D., Usova, E. B., Zavodnik, V. E. & Kul’nevich, V. G. (1992). Chem. Heterocycl. Compd, 28, 890–894.
  • Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky & C. N. Rees, p. 238. Oxford: Pergamon Press.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Parra, M., Alderete, J., Zuniga, C., Gallardo, H., Hidalgo, P., Vergara, J. & Hernandez, S. (2001). Liq. Cryst.28, 1659–1666.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, P., Singh, S. P., Sudhakar, S., Dodabalapur, A. & Sellinger, A. (2008). Chem. Mater.20, 3184–3190.
  • Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srivastava, R. M., Neves, R. A. W., Schneider, R., Vieira, A. A. & Gallardo, H. (2008). Liq. Cryst.35, 737–742.
  • Vieira, A. A., Cristiano, R., Bortoluzzi, A. J. & Gallardo, H. (2008). J. Mol. Struct.875, 364–371.
  • Yamashita, Y. (2010). ACS Appl. Mater. Interfaces, 5, 1303–1307. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography