PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2276.
Published online 2010 August 11. doi:  10.1107/S1600536810031260
PMCID: PMC3007995

N-(3-Methyl­phen­yl)quinoxalin-2-amine monohydrate

Abstract

The quinoxaline system in the title hydrate, C15H13N3·H2O, is roughly planar, the r.m.s. deviation for the 18 non-H atoms being 0.188 Å; this conformation features a short intra­molecular C—H(...)N(pyrazine) inter­action. In the crystal, the amine H atom forms an N—H(...)O hydrogen bond to the water mol­ecule, which in turn forms two O—H(...)N hydrogen bonds to the pyrazine N atoms of different organic mol­ecules. These inter­actions lead to supra­molecular arrays in the bc plane that are two mol­ecules thick; additional π–π inter­actions stabilize the layers [ring centroid–centroid distance = 3.5923 (7) Å]. The layers stack along the a-axis direction via C—H(...)π contacts.

Related literature

For a related structure, see: Fairuz et al. (2010 [triangle]). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001 [triangle]); Abdullah (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2276-scheme1.jpg

Experimental

Crystal data

  • C15H13N3·H2O
  • M r = 253.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2276-efi1.jpg
  • a = 10.9002 (8) Å
  • b = 11.1048 (8) Å
  • c = 11.1715 (8) Å
  • β = 106.780 (1)°
  • V = 1294.67 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 1.000
  • 12521 measured reflections
  • 3100 independent reflections
  • 2608 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.02
  • 3100 reflections
  • 185 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031260/hb5601sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031260/hb5601Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ZA thanks the Ministry of Higher Education, Malaysia, for a research grant (RG027/09AFR). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title hydrate, (I), was investigated in continuation of studies (Fairuz et al., 2010) into molecules that present interesting fluorescence properties (Kawai et al. 2001; Abdullah, 2005). The asymmetric unit of (I), Fig. 1, comprises a molecule of N-(3-methylphenyl)quinoxalin-2-amine and a water molecule of crystallization. The organic molecule is essentially planar with the r.m.s. deviation of the 18 non-hydrogen atoms being 0.188 Å [maximum deviations = 0.358 (1) Å for atom C7 and -0.243 (1) Å for C2]. The greatest twists in the molecule occur about the N(amine)–C bonds with the values of the C1–N1–C8–N2 and C8–N1–C1–C6 torsion angles being 9.51 (18) and 8.48 (18) °, respectively. An intramolecular C–H···N2 contact, Table 1, contributes to the stability of the almost planar arrangement. The latter association does not preclude this pyrazine-N atom from participating in an intermolecular interaction. The amine forms a N–H···O hydrogen bond to the water molecule and each water-H forms a O–H···N hydrogen to a pyrazine-N of different molecules, Table 1. The result of this is the formation of layers two molecules thick, Fig. 2. Layers are further stabilized by π–π interactions occurring between centrosymmetrically related pyrazine rings [ring..centroid···centroid distance = 3.5923 (7) Å for symmetry operation -x, 1 - y, 1 - z]. Layers are inter-digitated along the a axis, Fig. 3, with the primary connections between them being of the type C–H···O, Table 1.

Experimental

2-Chloroquinoxaline (0.3260 g, 0.002 mol) dissolved in ethanol (5 ml) was added to m-toluidine (0.21 ml, 0.002 mol). The mixture refluxed for 5 h and extracted with chloroform (3 × 10 ml). Evaporation of solvent gave the crude product and pure 2-N-(m-methyl)anilinoquinoxaline was obtained after separating using column chromatography with EtOAc:hexane (1:3) as the eluent. Recrystallization from its ethanol solution yield colorless prisms of (I) after few days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The O– and N-bound H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.84±0.01 Å and N–H 0.86±0.01 Å, respectively; the Uiso values were freely refined.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular layer in (I) in the bc plane mediated by O–H···N and N–H···O hydrogen bonds, shown as orange and blue dashed lines, respectively.
Fig. 3.
Unit-cell contents shown in projection down the c axis in (I), highlighting the stacking of layers. The O–H···N, N–H···O, C–H···π and π–π ...

Crystal data

C15H13N3·H2OF(000) = 536
Mr = 253.30Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4286 reflections
a = 10.9002 (8) Åθ = 2.7–28.1°
b = 11.1048 (8) ŵ = 0.08 mm1
c = 11.1715 (8) ÅT = 100 K
β = 106.780 (1)°Prism, colourless
V = 1294.67 (16) Å30.30 × 0.20 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3100 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.942, Tmax = 1.000k = −14→14
12521 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0605P)2 + 0.3508P] where P = (Fo2 + 2Fc2)/3
3100 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.13500 (8)0.90644 (8)0.33421 (8)0.0223 (2)
N10.23584 (9)0.74212 (8)0.54040 (9)0.0164 (2)
N20.22297 (8)0.54565 (8)0.61373 (8)0.0155 (2)
N30.09733 (9)0.48107 (8)0.36216 (9)0.0173 (2)
C10.31138 (10)0.80081 (10)0.64828 (10)0.0160 (2)
C20.32032 (11)0.92624 (10)0.63975 (11)0.0197 (2)
H20.27190.96730.56680.024*
C30.40005 (11)0.99008 (11)0.73821 (12)0.0229 (3)
H30.40621.07510.73230.027*
C40.47106 (11)0.93112 (11)0.84546 (11)0.0221 (3)
H40.52670.97580.91170.027*
C50.46125 (10)0.80690 (11)0.85650 (10)0.0190 (2)
C60.38116 (10)0.74173 (10)0.75738 (10)0.0171 (2)
H60.37410.65690.76410.021*
C70.53811 (11)0.74244 (12)0.97319 (11)0.0241 (3)
H7A0.52890.78481.04710.036*
H7B0.62860.74100.97550.036*
H7C0.50660.65970.97270.036*
C80.20156 (10)0.62408 (10)0.52164 (10)0.0148 (2)
C90.13809 (10)0.58960 (10)0.39371 (10)0.0165 (2)
H90.12580.64900.33010.020*
C100.11971 (10)0.39634 (10)0.45706 (10)0.0158 (2)
C110.07801 (10)0.27676 (10)0.42863 (11)0.0197 (2)
H11A0.03440.25490.34490.024*
C120.10028 (11)0.19203 (10)0.52154 (12)0.0221 (3)
H12A0.07200.11150.50210.027*
C130.16493 (11)0.22376 (10)0.64566 (11)0.0216 (2)
H130.18040.16430.70950.026*
C140.20597 (11)0.34018 (10)0.67553 (11)0.0194 (2)
H140.24950.36060.75970.023*
C150.18364 (10)0.42907 (10)0.58167 (10)0.0155 (2)
H1n0.2046 (14)0.7886 (12)0.4763 (11)0.028 (4)*
H1w0.1780 (15)0.9131 (16)0.2821 (14)0.042 (5)*
H2w0.0595 (11)0.9256 (17)0.2944 (16)0.052 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.0230 (4)0.0262 (5)0.0170 (4)0.0023 (3)0.0046 (3)0.0060 (3)
N10.0191 (4)0.0137 (4)0.0140 (4)−0.0006 (3)0.0010 (3)0.0017 (3)
N20.0175 (4)0.0142 (4)0.0144 (4)0.0003 (3)0.0040 (3)−0.0004 (3)
N30.0180 (4)0.0180 (5)0.0153 (5)−0.0011 (3)0.0042 (3)−0.0015 (4)
C10.0149 (5)0.0165 (5)0.0170 (5)−0.0009 (4)0.0053 (4)−0.0021 (4)
C20.0209 (5)0.0169 (5)0.0212 (6)−0.0005 (4)0.0059 (4)−0.0002 (4)
C30.0238 (6)0.0177 (5)0.0275 (6)−0.0040 (4)0.0080 (5)−0.0048 (5)
C40.0191 (5)0.0254 (6)0.0218 (6)−0.0052 (4)0.0058 (4)−0.0082 (5)
C50.0159 (5)0.0253 (6)0.0162 (5)−0.0014 (4)0.0056 (4)−0.0022 (4)
C60.0167 (5)0.0178 (5)0.0171 (5)−0.0012 (4)0.0052 (4)−0.0004 (4)
C70.0211 (6)0.0328 (7)0.0165 (6)−0.0019 (5)0.0022 (4)−0.0013 (5)
C80.0135 (5)0.0152 (5)0.0156 (5)0.0008 (4)0.0039 (4)−0.0011 (4)
C90.0175 (5)0.0169 (5)0.0145 (5)0.0000 (4)0.0034 (4)0.0016 (4)
C100.0149 (5)0.0158 (5)0.0175 (5)0.0004 (4)0.0061 (4)−0.0007 (4)
C110.0192 (5)0.0181 (5)0.0223 (6)−0.0024 (4)0.0068 (4)−0.0044 (4)
C120.0240 (6)0.0146 (5)0.0305 (6)−0.0022 (4)0.0120 (5)−0.0021 (5)
C130.0265 (6)0.0166 (5)0.0248 (6)0.0028 (4)0.0125 (5)0.0049 (4)
C140.0234 (5)0.0178 (5)0.0182 (5)0.0025 (4)0.0080 (4)0.0007 (4)
C150.0161 (5)0.0150 (5)0.0167 (5)0.0009 (4)0.0065 (4)−0.0006 (4)

Geometric parameters (Å, °)

O1W—H1w0.849 (9)C5—C71.5110 (16)
O1W—H2w0.842 (9)C6—H60.9500
N1—C81.3625 (14)C7—H7A0.9800
N1—C11.4080 (13)C7—H7B0.9800
N1—H1n0.869 (9)C7—H7C0.9800
N2—C81.3164 (14)C8—C91.4480 (15)
N2—C151.3781 (14)C9—H90.9500
N3—C91.2977 (14)C10—C111.4098 (15)
N3—C101.3855 (14)C10—C151.4126 (15)
C1—C61.3998 (15)C11—C121.3697 (17)
C1—C21.4015 (15)C11—H11A0.9500
C2—C31.3840 (16)C12—C131.4069 (17)
C2—H20.9500C12—H12A0.9500
C3—C41.3885 (17)C13—C141.3772 (16)
C3—H30.9500C13—H130.9500
C4—C51.3918 (17)C14—C151.4092 (15)
C4—H40.9500C14—H140.9500
C5—C61.3978 (15)
H1w—O1W—H2w105.3 (18)C5—C7—H7C109.5
C8—N1—C1130.07 (9)H7A—C7—H7C109.5
C8—N1—H1n114.8 (10)H7B—C7—H7C109.5
C1—N1—H1n115.1 (10)N2—C8—N1122.51 (10)
C8—N2—C15116.54 (9)N2—C8—C9121.52 (10)
C9—N3—C10116.87 (9)N1—C8—C9115.97 (9)
C6—C1—C2119.61 (10)N3—C9—C8122.84 (10)
C6—C1—N1124.39 (10)N3—C9—H9118.6
C2—C1—N1115.90 (10)C8—C9—H9118.6
C3—C2—C1119.67 (11)N3—C10—C11119.55 (10)
C3—C2—H2120.2N3—C10—C15120.48 (10)
C1—C2—H2120.2C11—C10—C15119.98 (10)
C2—C3—C4120.66 (11)C12—C11—C10120.08 (11)
C2—C3—H3119.7C12—C11—H11A120.0
C4—C3—H3119.7C10—C11—H11A120.0
C3—C4—C5120.39 (10)C11—C12—C13120.24 (10)
C3—C4—H4119.8C11—C12—H12A119.9
C5—C4—H4119.8C13—C12—H12A119.9
C4—C5—C6119.30 (10)C14—C13—C12120.61 (11)
C4—C5—C7120.55 (10)C14—C13—H13119.7
C6—C5—C7120.14 (11)C12—C13—H13119.7
C5—C6—C1120.34 (10)C13—C14—C15120.20 (11)
C5—C6—H6119.8C13—C14—H14119.9
C1—C6—H6119.8C15—C14—H14119.9
C5—C7—H7A109.5N2—C15—C14119.39 (10)
C5—C7—H7B109.5N2—C15—C10121.72 (10)
H7A—C7—H7B109.5C14—C15—C10118.89 (10)
C8—N1—C1—C68.48 (18)N2—C8—C9—N30.87 (17)
C8—N1—C1—C2−175.06 (11)N1—C8—C9—N3−178.34 (10)
C6—C1—C2—C31.34 (16)C9—N3—C10—C11−179.84 (10)
N1—C1—C2—C3−175.31 (10)C9—N3—C10—C150.27 (15)
C1—C2—C3—C4−0.14 (17)N3—C10—C11—C12179.60 (10)
C2—C3—C4—C5−1.21 (18)C15—C10—C11—C12−0.51 (16)
C3—C4—C5—C61.34 (17)C10—C11—C12—C13−0.07 (17)
C3—C4—C5—C7−179.84 (10)C11—C12—C13—C140.36 (18)
C4—C5—C6—C1−0.13 (16)C12—C13—C14—C15−0.06 (17)
C7—C5—C6—C1−178.95 (10)C8—N2—C15—C14178.78 (10)
C2—C1—C6—C5−1.20 (16)C8—N2—C15—C10−2.12 (15)
N1—C1—C6—C5175.14 (10)C13—C14—C15—N2178.62 (10)
C15—N2—C8—N1−179.88 (9)C13—C14—C15—C10−0.51 (16)
C15—N2—C8—C90.96 (15)N3—C10—C15—N21.58 (16)
C1—N1—C8—N29.51 (18)C11—C10—C15—N2−178.32 (10)
C1—N1—C8—C9−171.29 (10)N3—C10—C15—C14−179.31 (10)
C10—N3—C9—C8−1.45 (16)C11—C10—C15—C140.79 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···N20.952.342.9482 (14)122
N1—H1n···O1w0.87 (1)2.03 (1)2.8951 (12)176.(2)
O1w—H1w···N2i0.85 (1)2.13 (1)2.9382 (13)160.(2)
O1w—H2w···N3ii0.84 (1)2.15 (1)2.9504 (12)158.(2)
C7—H7b···Cg1iii0.982.713.6532 (14)161

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5601).

References

  • Abdullah, Z. (2005). Int. J. Chem. Sci 3, 9–15.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2186. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc 11, 23–32.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography