PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1148–m1149.
Published online 2010 August 21. doi:  10.1107/S1600536810033143
PMCID: PMC3007973

Tris(ethane-1,2-diamine-κ2 N,N′)cobalt(III) carbonate iodide tetra­hydrate

Abstract

The title compound, [Co(C2H8N2)3](CO3)I·4H2O, crystallizes with a [Co(en)3]3+ cation (en is ethane-1,2-diamine), CO3 2− and I anions and four water mol­ecules in the asymmetric unit. In the cation, the three rings formed by the ethyl­enediamine units and the CoIII metal ion are in slightly distorted twist conformations. Numerous O—H(...)O, N—H(...)O, N—H(...)I and O—H(...)I inter­molecular hydrogen bonds between the cation and two anions in concert with the four water mol­ecules dominate the crystal packing and create a supra­molecular infinite three-dimensional framework.

Related literature

For background to double salts, see: Dvorkin et al. (1989 [triangle], 1991 [triangle]); Farago et al. (1967 [triangle]). Brewer & Butcher (2009 [triangle]). For the synthesis, see: Broomhead et al. (1960 [triangle]). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer & Tarasova (1982 [triangle]); Seifer et al. (1981 [triangle]); Piazzesi et al. (2007 [triangle]). For thermodynamics of the outer sphere solution inter­action of [Co(en)3]3+ with the carbonate ion, see: Mironov et al. (1973 [triangle], 1976 [triangle]). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976 [triangle]); Liu et al. (1995 [triangle]); Lappin et al. (1993 [triangle]); Mizuta et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1148-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H8N2)3](CO3)I·4H2O
  • M r = 498.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1148-efi1.jpg
  • a = 16.6907 (2) Å
  • b = 8.7031 (1) Å
  • c = 12.5718 (2) Å
  • V = 1826.19 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.67 mm−1
  • T = 123 K
  • 0.52 × 0.46 × 0.35 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.737, T max = 1.000
  • 25329 measured reflections
  • 7440 independent reflections
  • 6109 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.048
  • S = 0.97
  • 7440 reflections
  • 224 parameters
  • 13 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.52 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3466 Friedel pairs
  • Flack parameter: 0.034 (8)

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033143/bt5324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033143/bt5324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

[Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K or NH4, X = SCN– or SeCN–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Structural studies of these thiocyanate double salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. The reaction of [Co(en)3]3+ with potassium cyanate (Brewer & Butcher, 2009) was conducted to determine if the [(K(OCN)3)2-]n ion could be formed and isolated as its salt with the [Co(en)3]3+ cation. Analysis of the reaction product by single-crystal diffraction revealed the [Co(en)3]3+ cation and carbonate and iodide ions. This suggests hydroysis of cyanate as it is the only source of a carbon atom in the reaction mixture other than the ethylenediamine ligand, (i.e., [Co(en)3](I)3 + KOCN + 2H2O → [Co(en)3](CO3)(I).4H2O + NH4I + KI). The hydrolysis of cyanate to give carbonate has been observed with nickel (Seifer & Tarasova, 1982) and yttrium (Seifer et al., 1981) at elevated temperatures. In addition HNCO (Piazzesi et al., 2007) was hydrolyzed at elevated temperatures in the presence of solid catalysts. However, the present reaction takes place at room temperature. The thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion (added as a carbonate salt) have been reported (Mironov, et al., 1973, 1976). Similar structures containing the [Co(en)3]3+ cation have been reported (Brouty et al. 1976; Liu et al., 1995). Additional related structures have been also been reported (Lappin, et al., 1993; Mizuta et al., 1988). Hence in continuation with our studies of the potential catalytic role of [Co(en)3]3+ in the hydrolysis of amides and urea and the relationship to urease this new tris(ethane-1,2-diamine-K2 N,N')cobalt(III) carbonate iodide tetrahydrate compound is synthesized and its crystal structure is reported.

The title compound crystallizes with a [Co(en)3]3+ cation, (CO3)2- and I- anions and four water molecules in the asymmetric unit (Fig. 1). In the cation the three rings formed by the ethylenediamine units and Co3+metal ion are in slightly distorted twist conformations with C11—C12, C21—C22 and C31—C32 being twisted within rings 1 (Co/N11/C11/C12/N12), 2 (Co/N21/C21/C22/N22) and 3 (Co/N31/C31/C32/N32), respectively. Numerous O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework that extends throughout the crystalline lattice (Fig. 2).

Experimental

[Co(en)3]I3 was prepared as described previously (Broomhead et al., 1960). [Co(en)3]I3 was reacted with an excess of KOCN in water. The red blockish crystals were removed a week later by filtration.

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.92 Å, and C—H = 0.99 Å and with Uiso(H) = 1.17–1.20 Ueq(N) and Uiso(H) = 1.19–1.21 Ueq(C). H atoms on the water molecules were located by Fourier maps, and refined isotropically with O-H restrained to 0.82 (2)Å and H..H restrained to 1.297 (2)Å and Uiso(H) = 1.50 Ueq(O).

Figures

Fig. 1.
Molecular structure of C7H32CoIN6O7, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate O–H···O, N–H···H, N–H···I ...
Fig. 2.
Packing diagram of the C7H32CoIN6O7 viewed down the b axis. Dashed lines indicate O–H···O, N–H···H, N–H···I and O–H···I intermolecular ...

Crystal data

[Co(C2H8N2)3](CO3)I·4H2OF(000) = 1008
Mr = 498.22Dx = 1.812 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 14059 reflections
a = 16.6907 (2) Åθ = 4.6–34.7°
b = 8.7031 (1) ŵ = 2.67 mm1
c = 12.5718 (2) ÅT = 123 K
V = 1826.19 (4) Å3Chunk, orange
Z = 40.52 × 0.46 × 0.35 mm

Data collection

Oxford Diffraction Gemini R diffractometer7440 independent reflections
Radiation source: Enhance (Mo) X-ray Source6109 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 34.9°, θmin = 4.6°
[var phi] and ω scansh = −26→26
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −13→13
Tmin = 0.737, Tmax = 1.000l = −20→19
25329 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023w = 1/[σ2(Fo2) + (0.0247P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.004
S = 0.97Δρmax = 0.50 e Å3
7440 reflectionsΔρmin = −0.52 e Å3
224 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0039 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3466 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.034 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.253677 (10)0.80188 (2)0.618078 (18)0.01164 (4)
N110.18624 (8)0.71681 (17)0.50344 (11)0.0151 (3)
H11A0.19330.61210.49950.018*
H11B0.13310.73580.51790.018*
N120.31791 (8)0.89092 (17)0.50246 (11)0.0158 (3)
H12A0.30660.99390.49570.019*
H12B0.37160.88050.51740.019*
N210.31973 (7)0.61537 (14)0.62246 (13)0.0166 (2)
H21A0.28750.52970.62130.020*
H21B0.35290.61210.56410.020*
N220.32782 (8)0.88267 (16)0.72458 (11)0.0153 (3)
H22A0.34440.97940.70500.018*
H22B0.30230.89000.78920.018*
N310.18243 (8)0.71917 (17)0.72761 (12)0.0153 (3)
H31A0.16570.62240.70830.018*
H31B0.20970.71140.79100.018*
N320.18705 (7)0.98751 (14)0.62582 (13)0.0161 (2)
H32A0.21901.07360.62390.019*
H32B0.15260.99090.56870.019*
C110.20837 (10)0.7882 (2)0.40106 (13)0.0185 (3)
H11C0.18110.88850.39280.022*
H11D0.19250.72100.34120.022*
C120.29845 (10)0.8098 (2)0.40232 (13)0.0189 (3)
H12C0.32590.70910.39980.023*
H12D0.31580.87140.34020.023*
C210.36832 (10)0.6175 (2)0.72172 (14)0.0226 (4)
H21C0.41380.54490.71600.027*
H21D0.33500.58770.78360.027*
C220.39832 (9)0.7795 (2)0.73421 (14)0.0222 (3)
H22C0.42410.79270.80450.027*
H22D0.43820.80350.67830.027*
C310.11178 (10)0.8214 (2)0.74117 (14)0.0218 (3)
H31C0.08840.80800.81300.026*
H31D0.07020.79650.68770.026*
C320.14064 (10)0.9841 (2)0.72663 (17)0.0218 (3)
H32C0.09461.05550.72250.026*
H32D0.17501.01510.78710.026*
O1S0.25421 (6)0.80615 (15)1.08978 (9)0.0194 (2)
O2S0.23978 (8)0.67827 (14)0.93676 (10)0.0232 (3)
O3S0.27443 (8)0.92499 (15)0.93456 (10)0.0244 (3)
C1S0.25620 (8)0.80301 (18)0.98495 (13)0.0159 (3)
O1W0.48655 (10)1.0158 (3)0.4929 (2)0.0495 (6)
H1W10.4953 (16)1.003 (5)0.4303 (16)0.074*
H1W20.5264 (15)1.041 (4)0.522 (2)0.074*
O2W0.38714 (8)1.18109 (17)0.64128 (11)0.0285 (3)
H2W10.3484 (10)1.228 (3)0.625 (2)0.043*
H2W20.4135 (11)1.177 (3)0.5871 (16)0.043*
O3W0.10686 (8)0.44224 (16)0.64602 (12)0.0281 (3)
H3W10.1450 (11)0.385 (3)0.635 (2)0.042*
H3W20.0811 (12)0.406 (3)0.6930 (17)0.042*
O4W0.49798 (8)1.1631 (2)0.80022 (14)0.0363 (4)
H4W10.4993 (11)1.238 (3)0.839 (3)0.054*
H4W20.4597 (13)1.180 (3)0.7605 (19)0.054*
I0.500266 (6)0.526338 (14)0.47581 (2)0.02884 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.01398 (8)0.01044 (7)0.01049 (7)0.00031 (6)0.00016 (8)−0.00020 (9)
N110.0174 (6)0.0146 (7)0.0132 (6)0.0009 (5)−0.0016 (5)−0.0011 (5)
N120.0166 (6)0.0155 (7)0.0152 (6)0.0000 (5)0.0015 (4)0.0001 (5)
N210.0190 (5)0.0138 (6)0.0170 (6)0.0029 (4)0.0011 (6)0.0012 (6)
N220.0173 (6)0.0136 (7)0.0151 (6)−0.0006 (5)0.0001 (5)−0.0009 (5)
N310.0202 (6)0.0118 (7)0.0139 (6)−0.0018 (5)0.0007 (5)−0.0002 (5)
N320.0184 (5)0.0151 (6)0.0149 (6)0.0000 (4)0.0004 (6)−0.0007 (5)
C110.0239 (8)0.0189 (8)0.0125 (7)0.0003 (6)−0.0022 (6)0.0009 (6)
C120.0246 (8)0.0210 (9)0.0111 (7)0.0010 (6)0.0032 (6)−0.0012 (6)
C210.0249 (8)0.0232 (10)0.0199 (8)0.0072 (7)−0.0038 (7)0.0039 (6)
C220.0178 (7)0.0265 (9)0.0223 (8)0.0036 (7)−0.0060 (6)−0.0027 (7)
C310.0193 (7)0.0263 (9)0.0197 (8)0.0011 (6)0.0058 (6)0.0005 (7)
C320.0232 (7)0.0226 (9)0.0195 (7)0.0065 (7)0.0042 (8)−0.0033 (6)
O1S0.0242 (5)0.0213 (6)0.0129 (5)−0.0016 (4)−0.0006 (4)−0.0013 (4)
O2S0.0389 (7)0.0136 (6)0.0172 (6)−0.0040 (5)−0.0030 (5)−0.0013 (4)
O3S0.0428 (7)0.0138 (6)0.0166 (5)−0.0044 (5)0.0023 (5)0.0001 (5)
C1S0.0195 (6)0.0146 (6)0.0136 (6)0.0023 (5)0.0001 (7)0.0005 (7)
O1W0.0317 (8)0.0663 (12)0.0506 (18)−0.0069 (7)0.0049 (8)−0.0220 (10)
O2W0.0264 (6)0.0335 (8)0.0257 (7)0.0008 (5)−0.0022 (5)0.0036 (6)
O3W0.0262 (6)0.0259 (7)0.0321 (8)−0.0011 (5)0.0036 (5)−0.0006 (6)
O4W0.0326 (8)0.0494 (10)0.0269 (7)0.0031 (6)−0.0040 (6)−0.0047 (7)
I0.02008 (5)0.04341 (7)0.02305 (5)−0.00295 (5)−0.00117 (4)−0.00428 (9)

Geometric parameters (Å, °)

Co—N221.9541 (14)C11—H11C0.9900
Co—N311.9566 (14)C11—H11D0.9900
Co—N211.9630 (12)C12—H12C0.9900
Co—N321.9637 (12)C12—H12D0.9900
Co—N121.9654 (14)C21—C221.505 (3)
Co—N111.9729 (14)C21—H21C0.9900
N11—C111.476 (2)C21—H21D0.9900
N11—H11A0.9200C22—H22C0.9900
N11—H11B0.9201C22—H22D0.9900
N12—C121.479 (2)C31—C321.507 (3)
N12—H12A0.9200C31—H31C0.9900
N12—H12B0.9200C31—H31D0.9900
N21—C211.488 (2)C32—H32C0.9900
N21—H21A0.9201C32—H32D0.9900
N21—H21B0.9200O1S—C1S1.3186 (19)
N22—C221.485 (2)O2S—C1S1.273 (2)
N22—H22A0.9201O3S—C1S1.273 (2)
N22—H22B0.9200O1W—H1W10.808 (18)
N31—C311.487 (2)O1W—H1W20.788 (17)
N31—H31A0.9199O2W—H2W10.791 (15)
N31—H31B0.9201O2W—H2W20.811 (15)
N32—C321.486 (2)O3W—H3W10.820 (15)
N32—H32A0.9200O3W—H3W20.795 (15)
N32—H32B0.9201O4W—H4W10.818 (17)
C11—C121.515 (2)O4W—H4W20.824 (16)
N22—Co—N3192.01 (6)Co—N32—H32A109.9
N22—Co—N2185.56 (6)C32—N32—H32B109.9
N31—Co—N2190.99 (6)Co—N32—H32B109.9
N22—Co—N3291.64 (6)H32A—N32—H32B108.3
N31—Co—N3285.62 (6)N11—C11—C12106.94 (12)
N21—Co—N32175.53 (8)N11—C11—H11C110.3
N22—Co—N1291.11 (5)C12—C11—H11C110.3
N31—Co—N12175.62 (6)N11—C11—H11D110.3
N21—Co—N1292.32 (6)C12—C11—H11D110.3
N32—Co—N1291.21 (6)H11C—C11—H11D108.6
N22—Co—N11175.48 (6)N12—C12—C11106.62 (13)
N31—Co—N1191.68 (5)N12—C12—H12C110.4
N21—Co—N1191.75 (6)C11—C12—H12C110.4
N32—Co—N1191.25 (6)N12—C12—H12D110.4
N12—Co—N1185.35 (6)C11—C12—H12D110.4
C11—N11—Co109.64 (10)H12C—C12—H12D108.6
C11—N11—H11A109.7N21—C21—C22106.28 (14)
Co—N11—H11A109.7N21—C21—H21C110.5
C11—N11—H11B109.7C22—C21—H21C110.5
Co—N11—H11B109.7N21—C21—H21D110.5
H11A—N11—H11B108.2C22—C21—H21D110.5
C12—N12—Co108.75 (10)H21C—C21—H21D108.7
C12—N12—H12A109.9N22—C22—C21107.12 (13)
Co—N12—H12A109.9N22—C22—H22C110.3
C12—N12—H12B109.9C21—C22—H22C110.3
Co—N12—H12B109.9N22—C22—H22D110.3
H12A—N12—H12B108.3C21—C22—H22D110.3
C21—N21—Co108.63 (11)H22C—C22—H22D108.5
C21—N21—H21A110.0N31—C31—C32107.14 (13)
Co—N21—H21A110.0N31—C31—H31C110.3
C21—N21—H21B110.0C32—C31—H31C110.3
Co—N21—H21B110.0N31—C31—H31D110.3
H21A—N21—H21B108.3C32—C31—H31D110.3
C22—N22—Co109.88 (10)H31C—C31—H31D108.5
C22—N22—H22A109.7N32—C32—C31106.79 (15)
Co—N22—H22A109.7N32—C32—H32C110.4
C22—N22—H22B109.7C31—C32—H32C110.4
Co—N22—H22B109.7N32—C32—H32D110.4
H22A—N22—H22B108.2C31—C32—H32D110.4
C31—N31—Co110.04 (11)H32C—C32—H32D108.6
C31—N31—H31A109.7O2S—C1S—O3S121.71 (16)
Co—N31—H31A109.7O2S—C1S—O1S119.20 (15)
C31—N31—H31B109.7O3S—C1S—O1S119.08 (15)
Co—N31—H31B109.7H1W1—O1W—H1W2109 (2)
H31A—N31—H31B108.2H2W1—O2W—H2W2104 (2)
C32—N32—Co108.74 (11)H3W1—O3W—H3W2108 (2)
C32—N32—H32A109.9H4W1—O4W—H4W2104 (2)
N31—Co—N11—C11165.33 (12)N21—Co—N31—C31−172.33 (12)
N21—Co—N11—C11−103.63 (11)N32—Co—N31—C3110.59 (11)
N32—Co—N11—C1179.67 (11)N11—Co—N31—C31−80.54 (12)
N12—Co—N11—C11−11.44 (11)N22—Co—N32—C32−74.29 (11)
N22—Co—N12—C12159.63 (11)N31—Co—N32—C3217.60 (11)
N21—Co—N12—C1274.03 (11)N12—Co—N32—C32−165.44 (11)
N32—Co—N12—C12−108.70 (11)N11—Co—N32—C32109.19 (11)
N11—Co—N12—C12−17.54 (11)Co—N11—C11—C1237.13 (14)
N22—Co—N21—C2117.86 (11)Co—N12—C12—C1141.99 (14)
N31—Co—N21—C21−74.07 (11)N11—C11—C12—N12−51.59 (16)
N12—Co—N21—C21108.80 (11)Co—N21—C21—C22−42.12 (15)
N11—Co—N21—C21−165.78 (11)Co—N22—C22—C21−36.80 (16)
N31—Co—N22—C22101.65 (11)N21—C21—C22—N2251.17 (17)
N21—Co—N22—C2210.81 (11)Co—N31—C31—C32−36.00 (17)
N32—Co—N22—C22−172.68 (11)Co—N32—C32—C31−41.51 (15)
N12—Co—N22—C22−81.43 (11)N31—C31—C32—N3250.28 (18)
N22—Co—N31—C31102.08 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11A···O3Si0.921.902.7625 (19)155.
N11—H11B···Iii0.923.083.8409 (14)141.
N12—H12A···O2Siii0.921.932.8042 (19)158.
N12—H12B···O1W0.922.273.020 (2)138.
N21—H21A···O1Si0.922.102.9891 (18)161.
N21—H21B···I0.922.803.6165 (13)149.
N22—H22A···O2W0.922.062.970 (2)172.
N22—H22B···O3S0.921.912.8104 (19)166.
N31—H31A···O3W0.922.012.907 (2)165.
N31—H31B···O2S0.921.922.821 (2)165.
N32—H32A···O1Siii0.922.122.9760 (18)155.
N32—H32A···O2Siii0.922.613.146 (2)117.
N32—H32B···Iii0.922.803.6456 (13)153.
O1W—H1W1···O4Wiv0.81 (2)2.19 (3)2.892 (3)146 (4)
O1W—H1W2···O3Wv0.79 (2)2.07 (2)2.805 (3)156 (3)
O2W—H2W1···O1Siii0.79 (2)1.90 (2)2.6775 (17)170 (2)
O2W—H2W2···O1W0.81 (2)2.21 (2)2.881 (2)141 (2)
O3W—H3W1···O1Si0.82 (2)1.90 (2)2.6982 (17)163 (2)
O3W—H3W2···O4Wii0.80 (2)2.03 (2)2.811 (2)169 (2)
O4W—H4W1···Ivi0.82 (2)2.67 (2)3.4897 (18)176 (3)
O4W—H4W2···O2W0.82 (2)1.93 (2)2.728 (2)164 (3)

Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) x−1/2, −y+3/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) −x+1, −y+2, z−1/2; (v) x+1/2, −y+3/2, z; (vi) −x+1, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5324).

References

  • Brewer, G. & Butcher, R. J. (2009). 238th National ACS Meeting, Aug. 16–20. Washinton, DC, USA.
  • Broomhead, J. A., Dwyer, F. P. & Hogarth, J. W. (1960). Inorganic Synthesis, Vol. 6, pp. 186–188. New York: McGraw–Hill.
  • Brouty, C., Spinat, P., Whuler, A. & Herpin, P. (1976). Acta Cryst. B32, 2153–2159.
  • Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh.57, 5–8.
  • Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR, Ser. B, 10, 31–34.
  • Farago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728–729.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem.32, 4498–4504.
  • Liu, Y.-H., Fronczek, F. R., Watkins, S. F., Shaffer, G. W. & Musselman, R. L. (1995). Acta Cryst. C51, 1992–1994.
  • Mironov, V. E., Pyartman, A. K. & Kolobov, N. P. (1976). Zh. Fiz. Khim.50, 1967–1970.
  • Mironov, V. E., Ragulin, G. K., Solov’ev, Y. B., Fadeev, V. M. & Kolobov, N. P. (1973). Zh. Fiz. Khim.47, 530–532.
  • Mizuta, T., Tada, T., Kushi, Y. & Yoneda, H. (1988). Inorg. Chem., 27, 3836–3841.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Piazzesi, G., Nicosia, D., Devedas, M., Kroecher, O., Elsener, M. & Wokaun, A. (2007). Catal. Lett.115, 33–39.
  • Seifer, G. B., Chumaevskii, N. A., Minaeva, N. A. & Tarasova, Z. A. (1981). Zh. Neorg. Khim.27, 1731–1735.
  • Seifer, G. B. & Tarasova, Z. A. (1982). Zh. Neorg. Khim.27, 1587–1589.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography