PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1077–m1078.
Published online 2010 August 11. doi:  10.1107/S1600536810031168
PMCID: PMC3007970

Tetra-μ-acetato-κ8 O:O′-bis­{[4-methyl-N-(4-methyl­phen­yl)pyridin-2-amine-κN 1]copper(II)}

Abstract

The title complex, [Cu2(CH3COO)4(C13H14N2)2], features a binuclear mol­ecule, which lies about a crystallographic centre of inversion; the four acetate ions each bridge a pair of CuII atoms. The coordination of the metal atom is distorted octa­hedral within a donor set defined by four O atoms, the heterocyclic N atom and the second Cu atom. The pyridine ring is twisted with respect to the tolyl ring and forms a dihedral angle of 35.34 (9)°. A bifurcated N—H(...)(O,O) hydrogen bond is present, linking the amine group to two carboxyl­ate O atoms derived from different acetate ions. In the crystal, C—H(...)π inter­actions link mol­ecules into a supra­molecular array in the bc plane.

Related literature

For examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper(II) complexes, see: Barquín et al. (2004 [triangle]); Seco et al. (2004 [triangle]); Sieroń (2004 [triangle]); Fairuz et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1077-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C13H14N2)2]
  • M r = 759.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1077-efi1.jpg
  • a = 11.7519 (6) Å
  • b = 15.5822 (8) Å
  • c = 9.9050 (5) Å
  • β = 110.5698 (6)°
  • V = 1698.17 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 293 K
  • 0.40 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.648, T max = 0.746
  • 16009 measured reflections
  • 3890 independent reflections
  • 3462 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.083
  • S = 1.01
  • 3890 reflections
  • 225 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031168/hb5591sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031168/hb5591Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Z. Abdullah thanks the Ministry of Higher Education, Malaysia, for research grants (RG027/09AFR and PS374/2009B). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

In connection with on-going studies into the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2010), the binuclear title complex, (I), was investigated.

The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two CuII atoms bridged by four acetate groups. The Cu–O bond distances lie in a narrow range, i.e. 1.9701 (13) to 1.9759 (13) Å, Table 1. The distorted octahedral coordination environment for the Cu atom is completed by a pyridine-N atom derived from the 4-methyl-N-p-tolylpyridin-2-amine ligand and the second Cu atom [Cu···Cui = 2.6480 (4) Å for i: 1 - x, 1 - y, 1 - z]. Two intramolecular N1–H···O interactions are noted in which the amine-H spans carboxylate-O atoms derived from different ligands, Table 2. The dihedral angle formed between the pyridine and benzene rings of 35.34 (9) ° indicates the N-heterocycle is non-planar. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of -27.2 (3) °. In the crystal packing, contacts of the type C–H···π occur between methyl-H and pyridine rings, Table 2, and lead to the formation of supramolecular arrays in the bc plane, Fig. 2. Layers thus formed stack along the a axis, Fig. 3.

Experimental

Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added to a mixture of 4-methyl-N-p-tolylpyridin-2-amine (0.2183 g, 1.1 mmol) and trimethyl orthoformate (10 ml). The mixture was heated at 323 K, the green precipitate was collected and recrystallization from its acetonitrile solution yielded green prisms of (I).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 1 - x, 1 - y, 1 - z.
Fig. 2.
Supramolecular arrays in the bc plane in (I) mediated by C–H···π interactions shown as purple dashed lines.
Fig. 3.
Unit-cell contents shown in projection down the c axis in (I) showing the stacking of layers along a. The C–H···π contacts are shown as purple dashed lines.

Crystal data

[Cu2(C2H3O2)4(C13H14N2)2]F(000) = 788
Mr = 759.78Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8249 reflections
a = 11.7519 (6) Åθ = 4.3–28.2°
b = 15.5822 (8) ŵ = 1.31 mm1
c = 9.9050 (5) ÅT = 293 K
β = 110.5698 (6)°Prism, green
V = 1698.17 (15) Å30.40 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer3890 independent reflections
Radiation source: fine-focus sealed tube3462 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scanθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→15
Tmin = 0.648, Tmax = 0.746k = −20→19
16009 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0493P)2 + 0.7683P] where P = (Fo2 + 2Fc2)/3
3890 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.566326 (17)0.523188 (13)0.42225 (2)0.02759 (8)
N10.67899 (13)0.56104 (9)0.29545 (15)0.0288 (3)
N20.83831 (15)0.60834 (13)0.48943 (17)0.0431 (4)
H2n0.7883 (19)0.6036 (17)0.533 (3)0.060 (8)*
O10.59163 (14)0.62952 (9)0.53779 (16)0.0456 (3)
O20.47897 (13)0.59061 (9)0.66720 (15)0.0416 (3)
O30.41276 (12)0.56868 (10)0.28515 (15)0.0449 (3)
O40.30200 (12)0.52953 (10)0.41638 (16)0.0444 (3)
C10.54512 (15)0.64284 (11)0.63233 (19)0.0319 (4)
C20.5712 (2)0.72788 (14)0.7088 (3)0.0476 (5)
H2A0.64110.75350.69620.071*
H2B0.58700.71940.80980.071*
H2C0.50230.76510.66940.071*
C30.31446 (16)0.56196 (12)0.30683 (19)0.0343 (4)
C40.2011 (2)0.59515 (18)0.1922 (3)0.0570 (6)
H4A0.13090.57140.20670.086*
H4B0.20130.57860.09890.086*
H4C0.19890.65660.19790.086*
C50.62691 (17)0.54835 (13)0.1533 (2)0.0376 (4)
H50.54910.52500.11930.045*
C60.68042 (18)0.56738 (15)0.0545 (2)0.0426 (5)
H60.64050.5564−0.04310.051*
C70.79636 (18)0.60370 (13)0.1037 (2)0.0381 (4)
C80.85144 (16)0.61737 (12)0.24918 (19)0.0342 (4)
H80.92860.64170.28480.041*
C90.79178 (15)0.59485 (11)0.34396 (18)0.0287 (3)
C100.8574 (2)0.6289 (2)−0.0006 (2)0.0594 (7)
H10A0.93300.59860.02250.089*
H10B0.87250.68950.00590.089*
H10C0.80560.6146−0.09690.089*
C110.95658 (16)0.62975 (12)0.58042 (17)0.0313 (4)
C121.06199 (17)0.60942 (12)0.5541 (2)0.0351 (4)
H121.05730.58080.47000.042*
C131.17443 (17)0.63203 (13)0.6539 (2)0.0383 (4)
H131.24410.61970.63350.046*
C141.18612 (17)0.67236 (13)0.7825 (2)0.0391 (4)
C151.07993 (18)0.69041 (14)0.8091 (2)0.0422 (4)
H151.08480.71650.89540.051*
C160.96734 (17)0.67014 (14)0.7092 (2)0.0382 (4)
H160.89760.68380.72860.046*
C171.3088 (2)0.69482 (19)0.8908 (3)0.0605 (6)
H17A1.35910.71830.84160.091*
H17B1.34640.64410.94230.091*
H17C1.29930.73640.95750.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02400 (12)0.03200 (13)0.02806 (12)−0.00382 (8)0.01077 (8)−0.00001 (7)
N10.0256 (7)0.0335 (7)0.0283 (7)−0.0050 (6)0.0107 (5)−0.0009 (6)
N20.0290 (8)0.0746 (12)0.0281 (7)−0.0196 (8)0.0129 (6)−0.0065 (7)
O10.0547 (9)0.0384 (7)0.0547 (8)−0.0154 (6)0.0331 (7)−0.0131 (6)
O20.0451 (8)0.0390 (7)0.0475 (8)−0.0118 (6)0.0248 (6)−0.0106 (6)
O30.0342 (7)0.0612 (9)0.0396 (7)0.0082 (7)0.0133 (6)0.0156 (7)
O40.0285 (7)0.0626 (10)0.0407 (7)0.0018 (6)0.0102 (6)0.0122 (6)
C10.0273 (8)0.0305 (8)0.0353 (9)−0.0009 (7)0.0076 (7)−0.0028 (7)
C20.0500 (12)0.0361 (10)0.0557 (12)−0.0078 (9)0.0172 (10)−0.0128 (9)
C30.0299 (9)0.0369 (9)0.0320 (8)0.0046 (7)0.0057 (7)0.0001 (7)
C40.0399 (11)0.0736 (16)0.0467 (12)0.0173 (11)0.0017 (9)0.0116 (11)
C50.0312 (9)0.0492 (10)0.0314 (9)−0.0133 (8)0.0097 (7)−0.0049 (8)
C60.0404 (10)0.0600 (13)0.0270 (8)−0.0120 (9)0.0114 (7)−0.0047 (8)
C70.0368 (9)0.0497 (11)0.0326 (9)−0.0042 (8)0.0183 (8)0.0027 (8)
C80.0265 (8)0.0438 (10)0.0334 (8)−0.0072 (7)0.0120 (7)0.0038 (7)
C90.0261 (8)0.0316 (8)0.0291 (8)−0.0032 (6)0.0107 (6)−0.0002 (6)
C100.0529 (13)0.0952 (19)0.0381 (11)−0.0155 (13)0.0260 (10)0.0041 (12)
C110.0277 (8)0.0370 (9)0.0283 (8)−0.0073 (7)0.0086 (6)0.0016 (6)
C120.0355 (9)0.0372 (9)0.0335 (9)−0.0017 (7)0.0133 (7)−0.0034 (7)
C130.0276 (8)0.0427 (10)0.0445 (10)0.0012 (8)0.0125 (8)0.0025 (8)
C140.0301 (9)0.0421 (10)0.0386 (9)−0.0039 (8)0.0041 (7)0.0025 (8)
C150.0406 (10)0.0513 (11)0.0316 (9)−0.0028 (9)0.0090 (8)−0.0080 (8)
C160.0299 (9)0.0535 (11)0.0333 (9)−0.0021 (8)0.0135 (7)−0.0029 (8)
C170.0357 (11)0.0785 (17)0.0535 (13)−0.0105 (11)−0.0015 (10)−0.0050 (12)

Geometric parameters (Å, °)

Cu1—O2i1.9701 (13)C5—C61.368 (3)
Cu1—O31.9702 (14)C5—H50.9300
Cu1—O4i1.9713 (14)C6—C71.396 (3)
Cu1—O11.9759 (13)C6—H60.9300
Cu1—N12.2016 (14)C7—C81.373 (3)
Cu1—Cu1i2.6480 (4)C7—C101.502 (3)
N1—C51.339 (2)C8—C91.400 (2)
N1—C91.348 (2)C8—H80.9300
N2—C91.366 (2)C10—H10A0.9600
N2—C111.405 (2)C10—H10B0.9600
N2—H2n0.85 (3)C10—H10C0.9600
O1—C11.256 (2)C11—C161.388 (2)
O2—C11.255 (2)C11—C121.389 (3)
O2—Cu1i1.9701 (13)C12—C131.389 (3)
O3—C31.251 (2)C12—H120.9300
O4—C31.251 (2)C13—C141.384 (3)
O4—Cu1i1.9713 (14)C13—H130.9300
C1—C21.504 (3)C14—C151.391 (3)
C2—H2A0.9600C14—C171.505 (3)
C2—H2B0.9600C15—C161.382 (3)
C2—H2C0.9600C15—H150.9300
C3—C41.506 (3)C16—H160.9300
C4—H4A0.9600C17—H17A0.9600
C4—H4B0.9600C17—H17B0.9600
C4—H4C0.9600C17—H17C0.9600
O2i—Cu1—O388.66 (7)N1—C5—H5117.8
O2i—Cu1—O4i90.04 (7)C6—C5—H5117.8
O3—Cu1—O4i167.64 (6)C5—C6—C7118.40 (17)
O2i—Cu1—O1167.72 (6)C5—C6—H6120.8
O3—Cu1—O190.72 (7)C7—C6—H6120.8
O4i—Cu1—O187.95 (7)C8—C7—C6118.17 (16)
O2i—Cu1—N196.10 (5)C8—C7—C10121.22 (18)
O3—Cu1—N195.70 (5)C6—C7—C10120.60 (18)
O4i—Cu1—N196.67 (6)C7—C8—C9120.16 (16)
O1—Cu1—N196.17 (5)C7—C8—H8119.9
O2i—Cu1—Cu1i83.96 (4)C9—C8—H8119.9
O3—Cu1—Cu1i85.14 (4)N1—C9—N2114.53 (14)
O4i—Cu1—Cu1i82.50 (4)N1—C9—C8121.36 (15)
O1—Cu1—Cu1i83.77 (4)N2—C9—C8124.04 (16)
N1—Cu1—Cu1i179.17 (4)C7—C10—H10A109.5
C5—N1—C9117.49 (14)C7—C10—H10B109.5
C5—N1—Cu1114.60 (11)H10A—C10—H10B109.5
C9—N1—Cu1127.91 (11)C7—C10—H10C109.5
C9—N2—C11130.71 (15)H10A—C10—H10C109.5
C9—N2—H2n115.7 (18)H10B—C10—H10C109.5
C11—N2—H2n113.6 (18)C16—C11—C12118.46 (16)
C1—O1—Cu1123.64 (12)C16—C11—N2116.57 (16)
C1—O2—Cu1i123.75 (12)C12—C11—N2124.87 (16)
C3—O3—Cu1121.93 (12)C13—C12—C11119.80 (17)
C3—O4—Cu1i125.01 (12)C13—C12—H12120.1
O1—C1—O2124.88 (16)C11—C12—H12120.1
O1—C1—C2117.13 (17)C12—C13—C14122.15 (18)
O2—C1—C2117.99 (17)C12—C13—H13118.9
C1—C2—H2A109.5C14—C13—H13118.9
C1—C2—H2B109.5C13—C14—C15117.41 (17)
H2A—C2—H2B109.5C13—C14—C17121.47 (19)
C1—C2—H2C109.5C15—C14—C17121.1 (2)
H2A—C2—H2C109.5C16—C15—C14121.02 (18)
H2B—C2—H2C109.5C16—C15—H15119.5
O4—C3—O3125.38 (17)C14—C15—H15119.5
O4—C3—C4116.79 (18)C15—C16—C11121.12 (18)
O3—C3—C4117.83 (18)C15—C16—H16119.4
C3—C4—H4A109.5C11—C16—H16119.4
C3—C4—H4B109.5C14—C17—H17A109.5
H4A—C4—H4B109.5C14—C17—H17B109.5
C3—C4—H4C109.5H17A—C17—H17B109.5
H4A—C4—H4C109.5C14—C17—H17C109.5
H4B—C4—H4C109.5H17A—C17—H17C109.5
N1—C5—C6124.41 (17)H17B—C17—H17C109.5
O2i—Cu1—N1—C548.27 (14)C9—N1—C5—C60.0 (3)
O3—Cu1—N1—C5−40.99 (15)Cu1—N1—C5—C6179.90 (18)
O4i—Cu1—N1—C5139.02 (14)N1—C5—C6—C7−1.0 (3)
O1—Cu1—N1—C5−132.33 (14)C5—C6—C7—C80.9 (3)
Cu1i—Cu1—N1—C5142 (3)C5—C6—C7—C10−177.7 (2)
O2i—Cu1—N1—C9−131.83 (15)C6—C7—C8—C90.2 (3)
O3—Cu1—N1—C9138.92 (15)C10—C7—C8—C9178.8 (2)
O4i—Cu1—N1—C9−41.07 (15)C5—N1—C9—N2178.27 (18)
O1—Cu1—N1—C947.58 (15)Cu1—N1—C9—N2−1.6 (2)
Cu1i—Cu1—N1—C9−38 (3)C5—N1—C9—C81.2 (3)
O2i—Cu1—O1—C1−2.9 (4)Cu1—N1—C9—C8−178.74 (13)
O3—Cu1—O1—C184.09 (16)C11—N2—C9—N1169.2 (2)
O4i—Cu1—O1—C1−83.62 (16)C11—N2—C9—C8−13.8 (3)
N1—Cu1—O1—C1179.90 (16)C7—C8—C9—N1−1.3 (3)
Cu1i—Cu1—O1—C1−0.94 (15)C7—C8—C9—N2−178.1 (2)
O2i—Cu1—O3—C382.85 (16)C9—N2—C11—C16156.4 (2)
O4i—Cu1—O3—C3−1.2 (4)C9—N2—C11—C12−27.2 (3)
O1—Cu1—O3—C3−84.89 (16)C16—C11—C12—C13−2.0 (3)
N1—Cu1—O3—C3178.84 (16)N2—C11—C12—C13−178.34 (18)
Cu1i—Cu1—O3—C3−1.20 (15)C11—C12—C13—C142.0 (3)
Cu1—O1—C1—O21.2 (3)C12—C13—C14—C15−0.4 (3)
Cu1—O1—C1—C2−178.81 (14)C12—C13—C14—C17178.7 (2)
Cu1i—O2—C1—O1−0.6 (3)C13—C14—C15—C16−1.2 (3)
Cu1i—O2—C1—C2179.40 (14)C17—C14—C15—C16179.7 (2)
Cu1i—O4—C3—O3−2.7 (3)C14—C15—C16—C111.2 (3)
Cu1i—O4—C3—C4177.10 (15)C12—C11—C16—C150.4 (3)
Cu1—O3—C3—O42.6 (3)N2—C11—C16—C15177.08 (19)
Cu1—O3—C3—C4−177.18 (15)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.85 (3)2.36 (2)3.117 (3)149 (2)
N2—H2n···O4i0.85 (3)2.46 (3)3.047 (2)127 (2)
C2—H2a···Cg1ii0.962.803.566 (2)138

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5591).

References

  • Barquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049–m1050. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieroń, L. (2004). Acta Cryst. E60, m577–m578.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography