PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2198–o2199.
Published online 2010 August 4. doi:  10.1107/S1600536810030205
PMCID: PMC3007969

4-{3-[(2-Isopropyl-5-methyl­phen­oxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-3-(p-tol­yl)sydnone

Abstract

In the title triazolothia­diazin compound, C24H24N6O3S (systematic name: 4-{3-[(2-isopropyl-5-methyl­phen­oxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-3-(4-methyl­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate), an intra­molecular C—H(...)O hydrogen bond generates an S(6) ring motif. The two terminal methyl groups of the isopropyl unit are disordered over two sets of positions in a 0.715 (4):0.285 (4) ratio. The mean planes formed through the major and minor disordered isopropyl units are inclined at inter­planar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached phenyl ring. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The inter­planar angle formed between 1,2,3-oxadiazole and 1,2,4-triazole rings is 18.80 (11)°. In the crystal, neighbouring mol­ecules are linked into sheets lying parallel to the bc plane by C—H(...)N hydrogen bonds. Weak inter­molecular π–π inter­actions [centroid–centroid distances = 3.2935 (11) and 3.5590 (12) Å] further stabilize the crystal structure.

Related literature

For general background to and applications of materials related to the title triazolothia­diazine compound, see: Kalluraya & Rahiman (1997 [triangle]); Kalluraya et al. (2003 [triangle]); Newton & Ramsden (1982 [triangle]); Wagner & Hill (1974 [triangle]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995 [triangle]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For related structures, see: Goh et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2198-scheme1.jpg

Experimental

Crystal data

  • C24H24N6O3S
  • M r = 476.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2198-efi1.jpg
  • a = 16.7814 (3) Å
  • b = 7.2901 (1) Å
  • c = 20.2221 (3) Å
  • β = 106.991 (1)°
  • V = 2365.95 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 100 K
  • 0.25 × 0.21 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.958, T max = 0.988
  • 20258 measured reflections
  • 6897 independent reflections
  • 4836 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.162
  • S = 1.04
  • 6897 reflections
  • 314 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030205/hb5569sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030205/hb5569Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title triazolothiadiazine compound, an intramolecular C10—H10B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The two terminal methyl groups of the isopropyl unit (atoms C22 and C23) were disordered over two positions with refined occupancies of 0.715 (4) and 0.285 (4). The mean planes formed through the major and minor disordered isopropyl units were inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached C1-C6 phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts a twist-boat conformation. The puckering parameters are Q = 0.5952 (17) Å, θ = 113.75 (18)° and [var phi] = 146.7 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings were inclined to each other at interplanar angle of 18.80 (11)°. The interplanar angles formed between the C1-C6 and C14-C19 phenyl rings with respect to 1,2,4-triazole and 1,2,3-oxadiazole rings are 49.56 (11) and 49.84 (11)°, respectively. The bond lengths and angles are comparable to those closely related structures (Goh et al., 2010a,b,c,d).

In the crystal structure, intermolecular C10—H10A···N1, C15—H15A···N2 and C19—H19A···N2 hydrogen bonds (Table 1) link neighbouring molecules into two-dimensional networks parallel to the bc plane (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular Cg1···Cg1 [3.2935 (11) Å; symmetry code: -x+2, -y+1, -z] and Cg2···Cg3 [3.5590 (12) Å; symmetry code: -x+2, y-1/2, -z+1/2] interactions where Cg1, Cg2 and Cg3 are the centroids of 1,2,4-triazole, 1,2,3-oxadiazole and C14-C19 phenyl rings.

Experimental

A solution of triazole (0.01 mol) and 4-bromoacetyl-3-tolylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The solid separated was filtered, washed with water, dried and recrystallized from ethanol. Yellow plates of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

Atoms C22 and C23 are disordered over two sites with a refined occupancy ratio of 0.715 (4):0.285 (4). The same Uij parameters were applied for atom pairs C6/C11, C22/C22X and C23/C23X. All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. The minor disordered component is indicated as open bonds and an intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
The crystal structure of (I), viewed along the a axis, showing a two-dimensional network parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C24H24N6O3SF(000) = 1000
Mr = 476.55Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3586 reflections
a = 16.7814 (3) Åθ = 3.7–30.0°
b = 7.2901 (1) ŵ = 0.18 mm1
c = 20.2221 (3) ÅT = 100 K
β = 106.991 (1)°Plate, yellow
V = 2365.95 (6) Å30.25 × 0.21 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer6897 independent reflections
Radiation source: fine-focus sealed tube4836 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 30.2°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −23→23
Tmin = 0.958, Tmax = 0.988k = −10→9
20258 measured reflectionsl = −28→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0787P)2 + 0.8879P] where P = (Fo2 + 2Fc2)/3
6897 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S11.12872 (3)0.84837 (7)0.02404 (3)0.01713 (12)
O10.76141 (9)0.7367 (3)−0.02658 (8)0.0334 (4)
O21.15782 (9)1.0448 (2)0.31193 (7)0.0200 (3)
O31.24221 (9)0.9624 (2)0.24693 (8)0.0237 (3)
N10.90823 (10)0.6471 (2)−0.06230 (9)0.0171 (3)
N20.98873 (10)0.6914 (2)−0.06497 (9)0.0174 (3)
N30.97931 (9)0.7563 (2)0.03891 (8)0.0135 (3)
N40.99250 (10)0.8392 (2)0.10282 (8)0.0146 (3)
N51.07442 (10)1.0591 (2)0.30466 (9)0.0185 (3)
N61.03703 (10)1.0015 (2)0.24167 (8)0.0150 (3)
C10.67088 (12)0.6673 (3)0.04511 (11)0.0240 (4)
H1A0.71440.61280.07880.029*
C20.59151 (13)0.6753 (3)0.05414 (11)0.0232 (4)
C30.52834 (13)0.7576 (3)0.00321 (12)0.0285 (5)
H3A0.47500.76400.00810.034*
C40.54356 (13)0.8308 (4)−0.05515 (13)0.0298 (5)
H4A0.49990.8863−0.08830.036*
C50.62153 (12)0.8244 (3)−0.06609 (11)0.0242 (5)
C60.68510 (12)0.7400 (3)−0.01377 (10)0.0181 (3)
C70.83038 (11)0.6680 (3)0.02616 (10)0.0178 (4)
H7A0.82190.54000.03540.021*
H7B0.83830.73740.06850.021*
C80.90403 (11)0.6888 (3)−0.00054 (10)0.0148 (4)
C91.02919 (11)0.7570 (3)−0.00414 (10)0.0149 (4)
C101.14197 (11)0.7915 (3)0.11406 (10)0.0164 (4)
H10A1.14600.65940.11990.020*
H10B1.19340.84510.14260.020*
C111.06984 (12)0.8615 (3)0.13761 (10)0.0181 (3)
C121.09001 (11)0.9487 (3)0.20486 (10)0.0150 (4)
C131.17215 (12)0.9794 (3)0.25034 (10)0.0178 (4)
C140.94665 (11)1.0107 (3)0.22300 (10)0.0148 (4)
C150.90726 (12)0.9404 (3)0.26880 (11)0.0181 (4)
H15A0.93780.88430.30970.022*
C160.82111 (13)0.9555 (3)0.25236 (11)0.0212 (4)
H16A0.79370.90740.28240.025*
C170.77504 (12)1.0416 (3)0.19151 (12)0.0220 (4)
C180.81788 (13)1.1146 (3)0.14753 (11)0.0213 (4)
H18A0.78801.17330.10710.026*
C190.90384 (12)1.1014 (3)0.16288 (10)0.0173 (4)
H19A0.93181.15180.13370.021*
C200.57629 (14)0.5967 (4)0.11855 (13)0.0304 (5)
H20A0.53240.50760.10570.046*
H20B0.56060.69350.14440.046*
H20C0.62630.53920.14640.046*
C210.63844 (15)0.8953 (4)−0.13113 (13)0.0365 (6)
H21A0.69570.9417−0.11800.044*0.715 (4)
H21B0.69270.8569−0.13220.044*0.285 (4)
C220.5837 (4)1.0436 (9)−0.1679 (3)0.0728 (19)0.715 (4)
H22A0.58451.1429−0.13650.109*0.715 (4)
H22B0.52780.9981−0.18580.109*0.715 (4)
H22C0.60301.0865−0.20540.109*0.715 (4)
C230.6338 (3)0.7265 (7)−0.1815 (2)0.0531 (11)0.715 (4)
H23A0.64920.7659−0.22140.080*0.715 (4)
H23B0.57800.6789−0.19580.080*0.715 (4)
H23C0.67150.6324−0.15790.080*0.715 (4)
C22X0.6361 (9)1.129 (2)−0.1228 (8)0.0728 (19)0.285 (4)
H22D0.65631.1860−0.15760.109*0.285 (4)
H22E0.67091.1645−0.07790.109*0.285 (4)
H22F0.58001.1684−0.12830.109*0.285 (4)
C23X0.5773 (8)0.8472 (19)−0.1949 (5)0.0531 (11)0.285 (4)
H23D0.57440.7161−0.19950.080*0.285 (4)
H23E0.59280.8992−0.23300.080*0.285 (4)
H23F0.52390.8940−0.19480.080*0.285 (4)
C240.68205 (13)1.0618 (4)0.17411 (14)0.0315 (5)
H24A0.66140.98170.20300.047*
H24B0.65691.03020.12650.047*
H24C0.66851.18640.18170.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0194 (2)0.0186 (3)0.0151 (2)−0.00106 (17)0.00760 (17)0.00018 (19)
O10.0171 (7)0.0642 (13)0.0177 (8)0.0052 (7)0.0031 (6)0.0140 (8)
O20.0215 (7)0.0234 (8)0.0134 (7)−0.0021 (5)0.0025 (5)−0.0027 (6)
O30.0196 (7)0.0290 (9)0.0212 (8)−0.0027 (6)0.0037 (6)−0.0027 (7)
N10.0191 (7)0.0171 (9)0.0135 (8)−0.0002 (6)0.0024 (6)−0.0001 (7)
N20.0214 (7)0.0175 (9)0.0130 (8)0.0004 (6)0.0044 (6)−0.0014 (6)
N30.0178 (7)0.0124 (8)0.0106 (7)0.0003 (6)0.0046 (6)−0.0008 (6)
N40.0208 (7)0.0140 (8)0.0098 (7)0.0000 (6)0.0058 (6)−0.0023 (6)
N50.0224 (8)0.0182 (9)0.0135 (8)−0.0013 (6)0.0031 (6)−0.0026 (7)
N60.0200 (7)0.0139 (8)0.0108 (7)−0.0002 (6)0.0043 (6)−0.0001 (6)
C10.0202 (9)0.0315 (12)0.0183 (10)0.0003 (8)0.0025 (8)0.0001 (9)
C20.0239 (9)0.0267 (12)0.0195 (10)−0.0044 (8)0.0070 (8)−0.0046 (9)
C30.0193 (9)0.0385 (14)0.0282 (12)0.0028 (9)0.0077 (8)0.0007 (11)
C40.0204 (9)0.0417 (15)0.0261 (12)0.0075 (9)0.0053 (8)0.0043 (11)
C50.0211 (9)0.0322 (13)0.0180 (10)0.0014 (8)0.0036 (8)0.0028 (9)
C60.0178 (6)0.0223 (8)0.0137 (6)−0.0003 (5)0.0038 (5)0.0003 (6)
C70.0171 (8)0.0220 (11)0.0126 (9)0.0000 (7)0.0018 (7)0.0009 (8)
C80.0168 (8)0.0131 (9)0.0122 (9)0.0004 (6)0.0003 (7)0.0017 (7)
C90.0188 (8)0.0133 (9)0.0132 (9)0.0018 (7)0.0057 (7)0.0016 (7)
C100.0172 (8)0.0193 (10)0.0117 (9)0.0014 (7)0.0025 (7)−0.0011 (7)
C110.0178 (6)0.0223 (8)0.0137 (6)−0.0003 (5)0.0038 (5)0.0003 (6)
C120.0170 (8)0.0161 (10)0.0110 (8)−0.0007 (7)0.0028 (7)0.0005 (7)
C130.0231 (9)0.0168 (10)0.0123 (9)−0.0020 (7)0.0033 (7)−0.0007 (8)
C140.0170 (8)0.0151 (9)0.0112 (9)0.0011 (7)0.0026 (7)−0.0024 (7)
C150.0254 (9)0.0136 (10)0.0164 (9)−0.0001 (7)0.0080 (8)−0.0016 (8)
C160.0259 (10)0.0196 (11)0.0218 (10)−0.0025 (8)0.0125 (8)−0.0034 (8)
C170.0209 (9)0.0196 (11)0.0247 (11)0.0000 (7)0.0053 (8)−0.0068 (9)
C180.0253 (9)0.0207 (11)0.0176 (10)0.0032 (8)0.0056 (8)−0.0033 (8)
C190.0237 (9)0.0156 (10)0.0138 (9)0.0022 (7)0.0074 (7)−0.0013 (8)
C200.0279 (10)0.0401 (14)0.0257 (12)−0.0037 (10)0.0118 (9)0.0017 (11)
C210.0254 (10)0.0585 (18)0.0252 (12)0.0059 (11)0.0068 (9)0.0161 (12)
C220.075 (3)0.095 (4)0.062 (3)0.051 (3)0.041 (3)0.057 (3)
C230.067 (3)0.069 (3)0.0283 (19)−0.009 (2)0.0221 (19)−0.003 (2)
C22X0.075 (3)0.095 (4)0.062 (3)0.051 (3)0.041 (3)0.057 (3)
C23X0.067 (3)0.069 (3)0.0283 (19)−0.009 (2)0.0221 (19)−0.003 (2)
C240.0218 (10)0.0323 (13)0.0406 (14)−0.0009 (9)0.0094 (10)−0.0063 (11)

Geometric parameters (Å, °)

S1—C91.7327 (19)C14—C151.384 (3)
S1—C101.816 (2)C14—C191.386 (3)
O1—C61.379 (2)C15—C161.390 (3)
O1—C71.417 (2)C15—H15A0.9300
O2—N51.368 (2)C16—C171.396 (3)
O2—C131.418 (2)C16—H16A0.9300
O3—C131.204 (2)C17—C181.402 (3)
N1—C81.307 (2)C17—C241.503 (3)
N1—N21.405 (2)C18—C191.387 (3)
N2—C91.309 (2)C18—H18A0.9300
N3—C91.373 (2)C19—H19A0.9300
N3—C81.373 (2)C20—H20A0.9600
N3—N41.385 (2)C20—H20B0.9600
N4—C111.293 (2)C20—H20C0.9600
N5—N61.314 (2)C21—C23X1.438 (11)
N6—C121.371 (2)C21—C221.472 (5)
N6—C141.453 (2)C21—C231.585 (5)
C1—C61.387 (3)C21—C22X1.716 (16)
C1—C21.397 (3)C21—H21A0.9800
C1—H1A0.9300C21—H21B0.9600
C2—C31.381 (3)C22—H22A0.9600
C2—C201.511 (3)C22—H22B0.9600
C3—C41.385 (3)C22—H22C0.9600
C3—H3A0.9300C23—H23A0.9600
C4—C51.390 (3)C23—H23B0.9600
C4—H4A0.9300C23—H23C0.9600
C5—C61.406 (3)C22X—H22D0.9600
C5—C211.515 (3)C22X—H22E0.9600
C7—C81.494 (3)C22X—H22F0.9600
C7—H7A0.9700C23X—H23D0.9600
C7—H7B0.9700C23X—H23E0.9600
C10—C111.513 (3)C23X—H23F0.9600
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C121.449 (3)C24—H24C0.9600
C12—C131.434 (3)
C9—S1—C1093.77 (9)C14—C15—H15A120.7
C6—O1—C7117.65 (16)C16—C15—H15A120.7
N5—O2—C13111.22 (14)C15—C16—C17121.03 (19)
C8—N1—N2107.70 (15)C15—C16—H16A119.5
C9—N2—N1106.76 (15)C17—C16—H16A119.5
C9—N3—C8105.11 (16)C16—C17—C18118.38 (18)
C9—N3—N4129.02 (15)C16—C17—C24121.3 (2)
C8—N3—N4124.59 (15)C18—C17—C24120.3 (2)
C11—N4—N3115.09 (15)C19—C18—C17121.6 (2)
N6—N5—O2105.30 (15)C19—C18—H18A119.2
N5—N6—C12114.48 (16)C17—C18—H18A119.2
N5—N6—C14113.81 (15)C14—C19—C18117.90 (18)
C12—N6—C14131.68 (16)C14—C19—H19A121.0
C6—C1—C2120.4 (2)C18—C19—H19A121.0
C6—C1—H1A119.8C2—C20—H20A109.5
C2—C1—H1A119.8C2—C20—H20B109.5
C3—C2—C1118.3 (2)H20A—C20—H20B109.5
C3—C2—C20121.42 (19)C2—C20—H20C109.5
C1—C2—C20120.3 (2)H20A—C20—H20C109.5
C2—C3—C4120.7 (2)H20B—C20—H20C109.5
C2—C3—H3A119.7C23X—C21—C5115.5 (5)
C4—C3—H3A119.7C22—C21—C5116.2 (3)
C3—C4—C5122.6 (2)C22—C21—C23109.8 (4)
C3—C4—H4A118.7C5—C21—C23107.9 (3)
C5—C4—H4A118.7C23X—C21—C22X107.5 (8)
C4—C5—C6115.9 (2)C5—C21—C22X103.8 (5)
C4—C5—C21123.4 (2)C22—C21—H21A107.5
C6—C5—C21120.61 (19)C5—C21—H21A107.5
O1—C6—C1123.86 (18)C23—C21—H21A107.5
O1—C6—C5114.11 (18)C23X—C21—H21B109.9
C1—C6—C5122.03 (18)C22—C21—H21B131.2
O1—C7—C8105.79 (16)C5—C21—H21B109.9
O1—C7—H7A110.6C23—C21—H21B68.1
C8—C7—H7A110.6C22X—C21—H21B109.9
O1—C7—H7B110.6C21—C22—H22A109.5
C8—C7—H7B110.6C21—C22—H22B109.5
H7A—C7—H7B108.7C21—C22—H22C109.5
N1—C8—N3109.95 (16)C21—C23—H23A109.5
N1—C8—C7127.09 (17)H21B—C23—H23A94.7
N3—C8—C7122.97 (17)C21—C23—H23B109.5
N2—C9—N3110.46 (16)H21B—C23—H23B144.6
N2—C9—S1129.40 (15)C21—C23—H23C109.5
N3—C9—S1120.04 (14)H21B—C23—H23C85.0
C11—C10—S1111.30 (13)C21—C22X—H22D109.5
C11—C10—H10A109.4C21—C22X—H22E109.5
S1—C10—H10A109.4H22D—C22X—H22E109.5
C11—C10—H10B109.4C21—C22X—H22F109.5
S1—C10—H10B109.4H22D—C22X—H22F109.5
H10A—C10—H10B108.0H22E—C22X—H22F109.5
N4—C11—C12119.20 (17)C21—C23X—H23D109.5
N4—C11—C10123.66 (18)C21—C23X—H23E109.5
C12—C11—C10117.04 (16)H23D—C23X—H23E109.5
N6—C12—C13105.21 (16)C21—C23X—H23F109.5
N6—C12—C11128.48 (17)H23D—C23X—H23F109.5
C13—C12—C11126.00 (17)H23E—C23X—H23F109.5
O3—C13—O2120.25 (17)C17—C24—H24A109.5
O3—C13—C12135.99 (19)C17—C24—H24B109.5
O2—C13—C12103.76 (16)H24A—C24—H24B109.5
C15—C14—C19122.49 (17)C17—C24—H24C109.5
C15—C14—N6118.37 (17)H24A—C24—H24C109.5
C19—C14—N6118.95 (17)H24B—C24—H24C109.5
C14—C15—C16118.53 (19)
C8—N1—N2—C90.3 (2)N3—N4—C11—C10−4.3 (3)
C9—N3—N4—C11−27.6 (3)S1—C10—C11—N447.2 (3)
C8—N3—N4—C11167.24 (18)S1—C10—C11—C12−136.52 (16)
C13—O2—N5—N61.3 (2)N5—N6—C12—C13−0.9 (2)
O2—N5—N6—C12−0.2 (2)C14—N6—C12—C13176.92 (19)
O2—N5—N6—C14−178.43 (15)N5—N6—C12—C11172.90 (19)
C6—C1—C2—C3−0.2 (3)C14—N6—C12—C11−9.3 (3)
C6—C1—C2—C20−179.7 (2)N4—C11—C12—N65.8 (3)
C1—C2—C3—C4−0.2 (4)C10—C11—C12—N6−170.68 (19)
C20—C2—C3—C4179.3 (2)N4—C11—C12—C13178.4 (2)
C2—C3—C4—C50.6 (4)C10—C11—C12—C131.9 (3)
C3—C4—C5—C6−0.5 (4)N5—O2—C13—O3178.29 (18)
C3—C4—C5—C21176.9 (3)N5—O2—C13—C12−1.8 (2)
C7—O1—C6—C1−5.2 (3)N6—C12—C13—O3−178.5 (2)
C7—O1—C6—C5174.8 (2)C11—C12—C13—O37.5 (4)
C2—C1—C6—O1−179.7 (2)N6—C12—C13—O21.5 (2)
C2—C1—C6—C50.3 (3)C11—C12—C13—O2−172.44 (19)
C4—C5—C6—O1−180.0 (2)N5—N6—C14—C15−48.2 (2)
C21—C5—C6—O12.5 (3)C12—N6—C14—C15133.9 (2)
C4—C5—C6—C10.1 (3)N5—N6—C14—C19126.9 (2)
C21—C5—C6—C1−177.4 (2)C12—N6—C14—C19−50.9 (3)
C6—O1—C7—C8−177.50 (18)C19—C14—C15—C162.5 (3)
N2—N1—C8—N3−1.2 (2)N6—C14—C15—C16177.51 (18)
N2—N1—C8—C7179.21 (18)C14—C15—C16—C17−0.8 (3)
C9—N3—C8—N11.5 (2)C15—C16—C17—C18−0.7 (3)
N4—N3—C8—N1169.57 (17)C15—C16—C17—C24−178.7 (2)
C9—N3—C8—C7−178.86 (18)C16—C17—C18—C190.6 (3)
N4—N3—C8—C7−10.8 (3)C24—C17—C18—C19178.7 (2)
O1—C7—C8—N1−45.2 (3)C15—C14—C19—C18−2.6 (3)
O1—C7—C8—N3135.22 (19)N6—C14—C19—C18−177.54 (17)
N1—N2—C9—N30.6 (2)C17—C18—C19—C141.0 (3)
N1—N2—C9—S1−175.78 (15)C4—C5—C21—C23X−43.8 (7)
C8—N3—C9—N2−1.3 (2)C6—C5—C21—C23X133.5 (7)
N4—N3—C9—N2−168.63 (17)C4—C5—C21—C2227.4 (5)
C8—N3—C9—S1175.50 (14)C6—C5—C21—C22−155.2 (4)
N4—N3—C9—S18.1 (3)C4—C5—C21—C23−96.3 (3)
C10—S1—C9—N2−154.3 (2)C6—C5—C21—C2381.0 (3)
C10—S1—C9—N329.67 (17)C4—C5—C21—C22X73.6 (6)
C9—S1—C10—C11−51.92 (16)C6—C5—C21—C22X−109.1 (6)
N3—N4—C11—C12179.41 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.202.993 (3)138
C10—H10A···N1i0.972.563.393 (3)144
C15—H15A···N2ii0.932.493.377 (3)160
C19—H19A···N2iii0.932.473.397 (3)174

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5569).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010c). Acta Cryst. E66, o2162-o2163. [PMC free article] [PubMed]
  • Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010d). Acta Cryst. E66, o2178-o2179. [PMC free article] [PubMed]
  • Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem.71, 1049–1052.
  • Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem.12, 355–356.
  • Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wagner, H. & Hill, J. B. (1974). J. Med. Chem.17, 1337–1338. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography