PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2410–o2411.
Published online 2010 August 28. doi:  10.1107/S160053681003388X
PMCID: PMC3007965

(2E)-N′-[(E)-4-Chloro­benzyl­idene]-3-phenyl­prop-2-enohydrazide monohydrate

Abstract

The conformation about each of the imine and ethene bonds in the title hydrazide hydrate, C16H13ClN2O·H2O, is E. The hydrazide mol­ecule is approximately planar (r.m.s. deviation of the 20 non-H atoms = 0.172 Å). The most significant twist occurs about the ethene bond [C—C=C—C = 164.1 (5)°] and the dihedral angle formed between the benzene rings is 5.3 (2)°]. In the crystal, the presence of N—H(...)Ow and O—H(...)Oc (× 2; w = water and c = carbon­yl) hydrogen bonds leads to a supra­molecular array in the bc plane.

Related literature

For background to the resurgence of tuberculosis; see Bezerra et al. (2006 [triangle]); Chung & Shin (2007 [triangle]); Naz et al. (2006 [triangle]). For background to the biological activity of trans-cinnamic acid derivatives, see: Carvalho et al. (2008 [triangle]). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2410-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2O·H2O
  • M r = 302.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2410-efi1.jpg
  • a = 34.078 (3) Å
  • b = 5.9824 (6) Å
  • c = 7.2912 (6) Å
  • β = 95.674 (3)°
  • V = 1479.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 120 K
  • 0.10 × 0.08 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.492, T max = 1.000
  • 8532 measured reflections
  • 2572 independent reflections
  • 2016 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084
  • wR(F 2) = 0.196
  • S = 1.05
  • 2572 reflections
  • 199 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003388X/hb5594sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003388X/hb5594Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

Tuberculosis (TB) remains among the world's great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980's, and the outbreak of multi-drug resistant (MDR) TB (Bezerra et al., 2006; Chung & Shin 2007; Naz et al., 2006). In connection with on-going studies designed to generate novel therapeutic anti-malarial agents, we recently described a new class of isonicotinic and benzoic acid N'-(3-phenyl-acryloyl)hydrazide derivatives as attractive anti-tubercular agents (Carvalho et al., 2008). Allied with these investigations are structural studies: the structure of N'-[(2E)-3-phenylprop-2-enoyl]benzohydrazide was recently reported by us (Carvalho et al., 2009). We have synthesized for biological study a series of PhCH═CHCONHN═CHC6H4X compounds and now we report the crystal and molecular structure of one of these (1: X = Cl).

The asymmetric unit of (I) comprises the hydrazide molecule and a water molecule of crystallization. Despite there being twists in the molecule of (I), Fig. 1, the r.m.s. deviation of the 20 non-hydrogen atoms is 0.172 Å [max. and min. deviations = 0.284 (4) for atom N2 and -0.362 (1) Å for the Cl atom]. The dihedral angle formed between the peripheral benzene rings is 5.3 (2) °. The major twist in the molecule occurs about the C9═C10 bond as seen in the value of the C9–C10–C11–C12 torsion angle of 164.1 (5) °. The conformation about the imine [N1═C7 = 1.283 (6) Å] and ethene [C9═C10 = 1.328 (7) Å] bonds is E in each case.

The N2–H atom forms a hydrogen bond with the water molecule of crystallization and each O–H forms a hydrogen bond to a symmetry related amide-O, Table 1. The result of the hydrogen bonding is the formation of a supramolecular array in the bc plane, Fig. 2, and these stack along the a axis, Fig. 3.

Experimental

The title compound was obtained from the reaction between PhCH═CHC(═ O)NHNH2 and 4-chlorobenzaldehyde in ethanol. The mixture was stirred at room temperature for 30 min, when extensive precipitation was observed. The mixture was poured onto cold water and then neutralized with 10% aqueous sodium bicarbonate solution. The sample for X-ray structure determination was grown from its EtOH solution to yield colourless blocks of (I); yield 87%, m.pt. 484.3 K. 1H NMR (500.00 MHz, DMSO-d6) δ: 6.72 (1H, d, J = 16.0 Hz), 7.44 (3H, m), 7.53 (2H, d, J = 8.0 Hz), 7.65 (2H, m), 7.79 (3H, m), 8.06 and 8.25 (1H, s, syn / anti-E isomer), 11.61 and 11.77 (1H, s, syn / anti-E isomer) p.p.m.. 13C NMR (125 MHz, DMSO-d6) δ: 116.91, 120.04, 127.67, 128.16, 128.50, 128.64, 128.79, 128.85, 128.92, 129.82, 129.96, 133.04, 133.17, 134.09, 134.36, 134.52, 134.67, 140.65, 141.82, 142.19, 145.27, 161.38, 165.96 p.p.m.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraint O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
A view in projection down the a axis of the 2-D supramolecular array in the bc plane in (I) with the O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively. ...
Fig. 3.
A view in projection down the b axis of the crystal packing in (I) highlighting the stacking of layers. The O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively. ...

Crystal data

C16H13ClN2O·H2OF(000) = 632
Mr = 302.75Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19841 reflections
a = 34.078 (3) Åθ = 2.9–27.5°
b = 5.9824 (6) ŵ = 0.26 mm1
c = 7.2912 (6) ÅT = 120 K
β = 95.674 (3)°Block, colourless
V = 1479.2 (2) Å30.10 × 0.08 × 0.03 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2572 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2016 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
[var phi] and ω scansh = −40→39
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −7→7
Tmin = 0.492, Tmax = 1.000l = −8→8
8532 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0421P)2 + 8.0472P] where P = (Fo2 + 2Fc2)/3
2572 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.02800 (3)−0.2977 (2)0.18849 (16)0.0315 (4)
O10.28173 (10)−0.0171 (6)0.2229 (5)0.0330 (9)
N10.20834 (11)0.1523 (7)0.1857 (5)0.0280 (10)
N20.24086 (12)0.2830 (8)0.1657 (6)0.0299 (10)
H2N0.2398 (16)0.420 (3)0.129 (7)0.036*
C10.07011 (13)−0.1339 (9)0.1827 (6)0.0240 (11)
C20.10625 (13)−0.2220 (9)0.2528 (6)0.0238 (10)
H20.1074−0.36620.30770.029*
C30.14047 (13)−0.1007 (8)0.2430 (6)0.0235 (11)
H30.1652−0.16150.29060.028*
C40.13869 (13)0.1134 (8)0.1623 (6)0.0221 (10)
C50.10192 (13)0.2008 (9)0.0959 (6)0.0239 (10)
H50.10040.34580.04250.029*
C60.06758 (13)0.0787 (9)0.1071 (6)0.0267 (11)
H60.04270.14010.06350.032*
C70.17447 (14)0.2426 (9)0.1444 (6)0.0260 (11)
H70.17270.39290.10230.031*
C80.27682 (14)0.1859 (9)0.1837 (6)0.0282 (11)
C90.30969 (14)0.3385 (9)0.1550 (6)0.0290 (11)
H90.30460.49280.13290.035*
C100.34638 (14)0.2621 (10)0.1598 (6)0.0296 (12)
H100.35030.10790.18690.036*
C110.38178 (14)0.3936 (9)0.1270 (6)0.0295 (12)
C120.41917 (14)0.3067 (10)0.1809 (7)0.0339 (12)
H120.42150.16320.23670.041*
C130.45299 (15)0.4277 (11)0.1540 (7)0.0388 (14)
H130.47830.36880.19350.047*
C140.44946 (15)0.6344 (11)0.0691 (7)0.0372 (14)
H140.47250.71630.04820.045*
C150.41234 (15)0.7235 (10)0.0140 (7)0.0342 (13)
H150.41020.8662−0.04330.041*
C160.37871 (14)0.6055 (9)0.0424 (6)0.0305 (12)
H160.35350.66700.00490.037*
O1W0.23087 (11)0.6983 (6)−0.0131 (5)0.0349 (9)
H1W0.2424 (14)0.797 (8)0.055 (6)0.052*
H2W0.2444 (13)0.668 (9)−0.101 (5)0.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0216 (6)0.0401 (8)0.0329 (6)−0.0052 (6)0.0028 (5)0.0042 (6)
O10.0311 (19)0.031 (2)0.037 (2)−0.0030 (17)0.0035 (15)0.0053 (17)
N10.025 (2)0.036 (3)0.023 (2)−0.0076 (19)0.0022 (16)0.0007 (19)
N20.025 (2)0.033 (3)0.032 (2)−0.006 (2)0.0062 (17)0.002 (2)
C10.019 (2)0.033 (3)0.021 (2)−0.004 (2)0.0050 (18)0.001 (2)
C20.025 (2)0.030 (3)0.016 (2)−0.002 (2)0.0004 (18)−0.001 (2)
C30.022 (2)0.024 (3)0.024 (2)0.002 (2)0.0024 (19)−0.004 (2)
C40.022 (2)0.026 (3)0.019 (2)0.000 (2)0.0047 (18)0.001 (2)
C50.028 (2)0.024 (3)0.020 (2)0.003 (2)0.0014 (18)−0.004 (2)
C60.021 (2)0.032 (3)0.028 (3)0.005 (2)0.0063 (19)−0.001 (2)
C70.027 (3)0.025 (3)0.027 (2)−0.001 (2)0.006 (2)0.001 (2)
C80.028 (3)0.034 (3)0.022 (2)−0.005 (2)0.0005 (19)−0.004 (2)
C90.027 (3)0.030 (3)0.029 (2)−0.008 (2)0.003 (2)0.002 (2)
C100.029 (3)0.040 (3)0.019 (2)0.000 (2)−0.0007 (19)0.001 (2)
C110.022 (2)0.041 (3)0.025 (2)0.001 (2)0.0002 (19)−0.001 (2)
C120.030 (3)0.043 (3)0.029 (3)−0.004 (3)0.004 (2)0.000 (3)
C130.027 (3)0.062 (4)0.027 (3)0.003 (3)0.001 (2)−0.006 (3)
C140.027 (3)0.059 (4)0.027 (3)−0.012 (3)0.006 (2)−0.002 (3)
C150.038 (3)0.039 (3)0.027 (3)−0.008 (3)0.008 (2)−0.004 (2)
C160.025 (3)0.043 (3)0.022 (2)−0.005 (2)−0.0036 (19)0.000 (2)
O1W0.040 (2)0.031 (2)0.034 (2)−0.0018 (18)0.0060 (16)−0.0059 (17)

Geometric parameters (Å, °)

Cl—C11.742 (5)C8—C91.476 (7)
O1—C81.256 (6)C9—C101.328 (7)
N1—C71.283 (6)C9—H90.9500
N1—N21.376 (6)C10—C111.479 (7)
N2—C81.351 (6)C10—H100.9500
N2—H2N0.86 (2)C11—C121.396 (7)
C1—C61.385 (7)C11—C161.409 (8)
C1—C21.390 (6)C12—C131.392 (7)
C2—C31.381 (6)C12—H120.9500
C2—H20.9500C13—C141.382 (8)
C3—C41.408 (7)C13—H130.9500
C3—H30.9500C14—C151.395 (7)
C4—C51.399 (6)C14—H140.9500
C4—C71.461 (6)C15—C161.379 (7)
C5—C61.389 (7)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—H60.9500O1W—H1W0.84 (5)
C7—H70.9500O1W—H2W0.85 (4)
C7—N1—N2116.8 (4)N2—C8—C9114.5 (5)
C8—N2—N1118.5 (4)C10—C9—C8120.6 (5)
C8—N2—H2N117 (4)C10—C9—H9119.7
N1—N2—H2N124 (4)C8—C9—H9119.7
C6—C1—C2120.8 (4)C9—C10—C11126.4 (5)
C6—C1—Cl120.5 (4)C9—C10—H10116.8
C2—C1—Cl118.7 (4)C11—C10—H10116.8
C3—C2—C1120.2 (5)C12—C11—C16119.0 (5)
C3—C2—H2119.9C12—C11—C10119.5 (5)
C1—C2—H2119.9C16—C11—C10121.5 (4)
C2—C3—C4119.8 (4)C13—C12—C11120.8 (6)
C2—C3—H3120.1C13—C12—H12119.6
C4—C3—H3120.1C11—C12—H12119.6
C5—C4—C3119.0 (4)C14—C13—C12119.5 (5)
C5—C4—C7119.9 (4)C14—C13—H13120.3
C3—C4—C7121.1 (4)C12—C13—H13120.3
C6—C5—C4120.9 (5)C13—C14—C15120.5 (5)
C6—C5—H5119.5C13—C14—H14119.8
C4—C5—H5119.5C15—C14—H14119.8
C1—C6—C5119.1 (4)C16—C15—C14120.3 (5)
C1—C6—H6120.4C16—C15—H15119.9
C5—C6—H6120.4C14—C15—H15119.9
N1—C7—C4119.7 (5)C15—C16—C11120.0 (5)
N1—C7—H7120.1C15—C16—H16120.0
C4—C7—H7120.1C11—C16—H16120.0
O1—C8—N2122.5 (5)H1W—O1W—H2W110 (3)
O1—C8—C9123.0 (5)
C7—N1—N2—C8−171.2 (4)N1—N2—C8—C9178.4 (4)
C6—C1—C2—C3−1.9 (7)O1—C8—C9—C103.8 (7)
Cl—C1—C2—C3177.1 (3)N2—C8—C9—C10−176.7 (4)
C1—C2—C3—C40.2 (7)C8—C9—C10—C11177.7 (4)
C2—C3—C4—C51.0 (6)C9—C10—C11—C12164.1 (5)
C2—C3—C4—C7−177.9 (4)C9—C10—C11—C16−15.9 (8)
C3—C4—C5—C6−0.7 (6)C16—C11—C12—C130.8 (7)
C7—C4—C5—C6178.3 (4)C10—C11—C12—C13−179.2 (4)
C2—C1—C6—C52.3 (7)C11—C12—C13—C14−1.4 (8)
Cl—C1—C6—C5−176.7 (3)C12—C13—C14—C151.3 (8)
C4—C5—C6—C1−1.0 (7)C13—C14—C15—C16−0.5 (8)
N2—N1—C7—C4180.0 (4)C14—C15—C16—C11−0.1 (7)
C5—C4—C7—N1−172.0 (4)C12—C11—C16—C150.0 (7)
C3—C4—C7—N17.0 (7)C10—C11—C16—C15180.0 (4)
N1—N2—C8—O1−2.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2n···O1w0.86 (2)1.97 (3)2.811 (6)165 (5)
O1w—H1w···O1i0.84 (5)2.05 (5)2.877 (5)166 (4)
O1w—H2w···O1ii0.85 (4)2.10 (4)2.923 (5)165 (5)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5594).

References

  • Bezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res.39, 801–807. [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenco, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett.18, 538–541. [PubMed]
  • Carvalho, S. A., da Silva, E. F., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118. [PMC free article] [PubMed]
  • Chung, H. S. & Shin, J. C. (2007). Food Chem.104, 1670–1677.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Naz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res.161, 43–48. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography