PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2278.
Published online 2010 August 11. doi:  10.1107/S1600536810031351
PMCID: PMC3007958

4-Ethyl­anilinium perchlorate–18-crown-6 (1/1)

Abstract

The asymmetric unit of the title compound, C8H12N+·ClO4 −.C12H24O6, contains one half of the cationic [(C2H5—C6H4—NH3)(18-crown-6)]+ moiety and one half of the ClO4 anion. Two O atoms of the crown ether, four C atoms and the N atom of the ethylanilinium unit and the Cl and two O atoms of the anion lie on a mirror plane. In the crystal structure, the –NH3 + group lies in the 18-crown-6 ring, forming a supra­molecular rotator–stator-like structure linked by intra­molecular N—H(...)O hydrogen bonds. The six O atoms of the crown ether lie approximately in a plane, the mean deviation being 0.1771 (3) Å; the N atom lies approximately 0.855 (3) Å from the centroid of the crown ether ring.

Related literature

For background to 18-crown-6 compounds, see: Bajaj & Poonia (1988 [triangle]); Fender et al. (2002 [triangle]); Kryatova et al. (2004 [triangle]). For related structures. see: Dapporto et al. (1996 [triangle]); Pears et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2278-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·ClO4 ·C12H24O6
  • M r = 485.95
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2278-efi2.jpg
  • a = 16.6121 (13) Å
  • b = 11.4813 (13) Å
  • c = 12.8274 (16) Å
  • V = 2446.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 298 K
  • 0.26 × 0.22 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.940, T max = 0.960
  • 21985 measured reflections
  • 2525 independent reflections
  • 1615 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.162
  • S = 1.05
  • 2525 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031351/jh2193sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031351/jh2193Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DHW thanks the China Postdoctoral Science Foundation funded project (20090451147), Jiangsu Planned Projects for Postdoctoral Research Funds (0802003B) and the SEU Major Postdoctoral Research Funds (3212000901) for financial support.

supplementary crystallographic information

Comment

Recently much attention has been devoted to crown ethers due to their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution (Bajaj et al., 1988; Fender et al., 2002; Kryatova et al., 2004). Both the nature of the ammonium cation (NH4+, RNH3+, R2NH2+, etc.) and the size of the crown ether can work on the stability and stoichiometry of these host–guest complexes. The host molecules combine with the guest species by intermolecular interaction, 18-Crown-6 has a high affinity for RNH3+cations and most studies of 18-crown-6 and its derivatives invariably showed a 1:1 stoichiometry with RNH3+ cations. For similar structures, see: Dapporto et al., 1996; Pears et al., 1988. In our laboratory, the title compound has been synthesized and its crystal structure is reported here.

The molecule of the title compound crystallizes in the orthorhombic Pnma (No. 62) space group with an asymmetric unit consisting of one half cationic [(C2H5—C6H4—NH3)(18-crown-6)]+ moiety and one half isolated anionic ClO4-, In the crystal structure, The –NH3+ nests in the 18-crown-6 ring to form a supramolecular rotator-stator-like structure by intramolecular N—H···O hydrogen-bonded interactions between the –NH3+ and six oxygen atoms [O1, O2, O2A, O3, O3A and O4; symmetry code A of (x, 1/2 - y, z)] of the crown ether (Fig 1). Intermolecular N—H···O hydrogen distances fall within the normal range: 2.88–2.97Å (Table 2). The six oxygen atoms of the crown ether lie approximately in a plane with the mean deviation of 0.1771 (3) Å, the N1 atom aparts from the center (Cg1) of the crown ring about 0.855 (3)Å with the Cg2—N1—C6 angle of 176.3 (2)°. No formal hydrogen bonds are found between the ClO4-and –NH3+ moiety. the 10 non-hydrogen atoms (C1, C4, C5, C6, N1, O1, O4, O5, O7 and Cl1) located in a mirror plane with occupancy factor of 1/2, other atoms apart from the mirror plane can be produced by the (x, 1/2 - y, z) symmetry transformation. The –NH3+ moiety nests almost perpendicularly on the crown ring with an angle of 96.7°, the ethyl group is just in the mirror plane. The anionic ClO4-adopts a slightly distorted tetrahedral geometry with the Cl–O bond distances of 1.42–1.44Å and the F—B—F bond angles of 107.8–111.4°, no formal hydrogen bonds are found between the ClO4-and –NH3+ moiety.

Experimental

The title compound, 4-ethylanilinium 18-crown-6 perchlorate was obtained as colorless block crystals by evaporation of themethanol solutioncontainingequal molar 18-crown-6 (Aldrich), perchloric acid (Aldrich)and 4-ethylbenzenamine (Aldrich)at room temperature. The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 434 K (below the compound melting point 474 K).

Refinement

All H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3, N)] and allowed to ride.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.Unlabelled atoms are related to the labelled atoms by the (x, 1/2 - y, z) symmetry transformation.
Fig. 2.
A view of the packing of the title compound, stacking along the c axis. Dashed blue lines indicate hydrogen bonds.

Crystal data

C8H12N+·ClO4·C12H24O6F(000) = 1040
Mr = 485.95Dx = 1.319 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 16269 reflections
a = 16.6121 (13) Åθ = 3.0–27.8°
b = 11.4813 (13) ŵ = 0.21 mm1
c = 12.8274 (16) ÅT = 298 K
V = 2446.6 (5) Å3Block, colorless
Z = 40.26 × 0.22 × 0.20 mm

Data collection

Rigaku Mercury2 diffractometer2525 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
graphiteRint = 0.086
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD_Profile_fitting scansh = −20→20
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −14→14
Tmin = 0.940, Tmax = 0.960l = −15→15
21985 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0551P)2 + 1.8906P] where P = (Fo2 + 2Fc2)/3
2525 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2764 (2)0.25000.1934 (3)0.0389 (9)
C20.30998 (18)0.1465 (3)0.1632 (2)0.0556 (8)
H20.28740.07630.18460.067*
C30.3779 (2)0.1472 (4)0.1007 (3)0.0696 (11)
H30.40060.07680.08030.084*
C40.4129 (3)0.25000.0678 (3)0.0660 (15)
C50.4875 (3)0.25000.0007 (4)0.104 (2)
H5A0.48480.1821−0.04420.125*0.50
H5B0.48480.3179−0.04420.125*0.50
C60.5599 (3)0.25000.0462 (5)0.148 (4)
H6A0.60100.2500−0.00630.222*
H6B0.56530.18170.08890.222*0.50
H6C0.56530.31830.08890.222*0.50
C70.2913 (2)0.1464 (3)0.5173 (3)0.0683 (10)
H7A0.24490.14690.56310.082*
H7B0.33940.14300.56000.082*
C80.2879 (2)0.0424 (3)0.4478 (3)0.0671 (10)
H8A0.33190.04470.39810.080*
H8B0.2927−0.02830.48870.080*
C90.1956 (2)−0.0628 (3)0.3407 (3)0.0619 (9)
H9A0.1970−0.12740.38940.074*
H9B0.2357−0.07650.28720.074*
C100.1145 (2)−0.0542 (3)0.2926 (3)0.0597 (9)
H10A0.0998−0.12860.26210.072*
H10B0.0750−0.03510.34560.072*
C110.03706 (19)0.0466 (3)0.1679 (3)0.0584 (9)
H11A−0.00290.05930.22180.070*
H11B0.0228−0.02380.13030.070*
C120.0379 (2)0.1467 (3)0.0954 (2)0.0576 (9)
H12A0.08080.13730.04480.069*
H12B−0.01280.15100.05810.069*
Cl10.09929 (7)0.25000.78473 (9)0.0546 (3)
N10.20552 (17)0.25000.2613 (2)0.0391 (8)
H1A0.19080.32310.27450.059*0.50
H1B0.21740.21420.32090.059*0.50
H1C0.16530.21270.22980.059*0.50
O10.29215 (17)0.25000.4559 (2)0.0555 (8)
O20.21277 (13)0.04384 (18)0.39416 (17)0.0562 (6)
O30.11466 (12)0.03337 (17)0.21407 (16)0.0499 (5)
O40.05004 (17)0.25000.1534 (2)0.0499 (8)
O50.1521 (2)0.25000.8728 (3)0.0782 (11)
O60.11189 (18)0.1476 (2)0.7244 (2)0.0994 (10)
O70.0176 (2)0.25000.8233 (3)0.0882 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.034 (2)0.048 (2)0.035 (2)0.0000.0011 (16)0.000
C20.0541 (19)0.058 (2)0.0549 (18)−0.0007 (16)0.0117 (15)−0.0028 (17)
C30.053 (2)0.094 (3)0.061 (2)0.017 (2)0.0112 (17)−0.016 (2)
C40.036 (2)0.125 (5)0.037 (2)0.0000.000 (2)0.000
C50.048 (3)0.215 (8)0.049 (3)0.0000.008 (3)0.000
C60.045 (3)0.317 (13)0.082 (4)0.0000.006 (3)0.000
C70.064 (2)0.089 (3)0.0517 (19)0.009 (2)−0.0140 (17)0.012 (2)
C80.061 (2)0.070 (2)0.071 (2)0.0155 (19)−0.0127 (18)0.015 (2)
C90.076 (2)0.0414 (19)0.068 (2)0.0107 (17)0.0072 (19)0.0112 (17)
C100.072 (2)0.0426 (18)0.065 (2)−0.0073 (16)0.0077 (18)0.0025 (16)
C110.0546 (19)0.054 (2)0.067 (2)−0.0138 (16)−0.0057 (17)−0.0073 (17)
C120.0550 (19)0.059 (2)0.0584 (19)−0.0027 (17)−0.0092 (16)−0.0118 (18)
Cl10.0523 (6)0.0445 (6)0.0670 (7)0.000−0.0106 (6)0.000
N10.0335 (16)0.0436 (19)0.0401 (18)0.0000.0010 (14)0.000
O10.0567 (19)0.068 (2)0.0423 (17)0.000−0.0083 (14)0.000
O20.0560 (13)0.0481 (13)0.0645 (13)0.0096 (11)−0.0071 (11)0.0050 (11)
O30.0503 (12)0.0424 (12)0.0569 (12)−0.0055 (9)0.0017 (10)0.0039 (10)
O40.0560 (18)0.0449 (18)0.0489 (17)0.000−0.0113 (14)0.000
O50.073 (2)0.092 (3)0.070 (2)0.000−0.0167 (19)0.000
O60.114 (2)0.079 (2)0.104 (2)0.0202 (17)−0.0095 (18)−0.0371 (17)
O70.050 (2)0.070 (3)0.144 (4)0.000−0.003 (2)0.000

Geometric parameters (Å, °)

C1—C21.368 (4)C9—C101.485 (4)
C1—C2i1.368 (4)C9—H9A0.9700
C1—N11.465 (5)C9—H9B0.9700
C2—C31.385 (4)C10—O31.423 (4)
C2—H20.9300C10—H10A0.9700
C3—C41.381 (4)C10—H10B0.9700
C3—H30.9300C11—O31.427 (4)
C4—C3i1.381 (4)C11—C121.479 (4)
C4—C51.508 (6)C11—H11A0.9700
C5—C61.337 (7)C11—H11B0.9700
C5—H5A0.9700C12—O41.415 (3)
C5—H5B0.9700C12—H12A0.9700
C6—H6A0.9600C12—H12B0.9700
C6—H6B0.9600Cl1—O61.423 (3)
C6—H6C0.9600Cl1—O6i1.423 (3)
C7—O11.427 (4)Cl1—O51.430 (3)
C7—C81.491 (5)Cl1—O71.444 (4)
C7—H7A0.9700N1—H1A0.8900
C7—H7B0.9700N1—H1B0.8900
C8—O21.425 (4)N1—H1C0.8900
C8—H8A0.9700O1—C7i1.427 (4)
C8—H8B0.9700O4—C12i1.415 (3)
C9—O21.432 (4)
C2—C1—C2i120.5 (4)C10—C9—H9A109.9
C2—C1—N1119.72 (19)O2—C9—H9B109.9
C2i—C1—N1119.72 (19)C10—C9—H9B109.9
C1—C2—C3119.4 (3)H9A—C9—H9B108.3
C1—C2—H2120.3O3—C10—C9109.8 (3)
C3—C2—H2120.3O3—C10—H10A109.7
C4—C3—C2121.7 (4)C9—C10—H10A109.7
C4—C3—H3119.2O3—C10—H10B109.7
C2—C3—H3119.2C9—C10—H10B109.7
C3i—C4—C3117.3 (4)H10A—C10—H10B108.2
C3i—C4—C5121.3 (2)O3—C11—C12109.6 (3)
C3—C4—C5121.3 (2)O3—C11—H11A109.8
C6—C5—C4119.3 (5)C12—C11—H11A109.8
C6—C5—H5A107.5O3—C11—H11B109.8
C4—C5—H5A107.5C12—C11—H11B109.8
C6—C5—H5B107.5H11A—C11—H11B108.2
C4—C5—H5B107.5O4—C12—C11108.8 (2)
H5A—C5—H5B107.0O4—C12—H12A109.9
C5—C6—H6A109.5C11—C12—H12A109.9
C5—C6—H6B109.5O4—C12—H12B109.9
H6A—C6—H6B109.5C11—C12—H12B109.9
C5—C6—H6C109.5H12A—C12—H12B108.3
H6A—C6—H6C109.5O6—Cl1—O6i111.4 (3)
H6B—C6—H6C109.5O6—Cl1—O5109.85 (15)
O1—C7—C8109.7 (2)O6i—Cl1—O5109.85 (15)
O1—C7—H7A109.7O6—Cl1—O7108.94 (16)
C8—C7—H7A109.7O6i—Cl1—O7108.94 (16)
O1—C7—H7B109.7O5—Cl1—O7107.8 (2)
C8—C7—H7B109.7C1—N1—H1A109.5
H7A—C7—H7B108.2C1—N1—H1B109.5
O2—C8—C7108.2 (3)H1A—N1—H1B109.5
O2—C8—H8A110.1C1—N1—H1C109.5
C7—C8—H8A110.1H1A—N1—H1C109.5
O2—C8—H8B110.1H1B—N1—H1C109.5
C7—C8—H8B110.1C7i—O1—C7113.0 (3)
H8A—C8—H8B108.4C8—O2—C9113.3 (2)
O2—C9—C10108.8 (3)C10—O3—C11111.6 (2)
O2—C9—H9A109.9C12—O4—C12i113.9 (3)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.202.919 (3)138.
N1—H1A···O3i0.892.222.972 (3)142.
N1—H1B···O10.892.172.881 (4)136.
N1—H1B···O20.892.172.919 (3)141.
N1—H1C···O40.892.192.930 (4)140.
N1—H1C···O30.892.232.972 (3)140.

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2193).

References

  • Bajaj, A. V. & Poonia, N. S. (1988). Coord. Chem. Rev.87, 55–213.
  • Dapporto, P., Paoli, P., Matijasic, I. & Tusek-Bozic, L. (1996). Inorg. Chim. Acta, 252, 383–389.
  • Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem.163, 286–293.
  • Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.
  • Pears, D. A., Stoddart, J. F., Fakley, M. E., Allwood, B. L. & Williams, D. J. (1988). Acta Cryst. C44, 1426–1430.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography