PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1090.
Published online 2010 August 11. doi:  10.1107/S1600536810031533
PMCID: PMC3007942

μ-Oxido-bis­({2,2′-[o-phenylenebis(nitrilo­methylidyne)]diphenolato}iron(III)) methanol monosolvate dihydrate

Abstract

The title complex, [Fe2(C20H14N2O2)2O]·CH4O·2H2O, is composed of μ-oxido-bridged ferric 2,2′-[o-phenylene­bis(nitrilo­methylidyne)]diphenolate (salphen) dimers, one methanol mol­ecule and two H2O mol­ecules. Each iron(III) ion, surrounded by two coordinating N and O atoms from the salphen ligand and one bridging O atom, shows a five-coordinate square-pyramidal geometry. One of the two solvent water mol­ecules is disordered over three positions with occupancies of 0.44 (1), 0.37 (1) and 0.19 (1).

Related literature

For background to μ-oxo-diiron(III) complexes, see: Kurtz et al. (1990 [triangle]); Vincent et al. (1990 [triangle]); Reedijk & Bouwman (1999 [triangle]); Oyaizu et al. (2001 [triangle]). For related structures, see: Ashmawy & Ujaimi (1991 [triangle]); Elmali et al. (1993 [triangle]); Oyaizu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1090-scheme1.jpg

Experimental

Crystal data

  • [Fe2(C20H14N2O2)2O]·CH4O·2H2O
  • M r = 824.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1090-efi1.jpg
  • a = 13.042 (3) Å
  • b = 13.249 (3) Å
  • c = 13.724 (3) Å
  • α = 116.60 (3)°
  • β = 110.50 (3)°
  • γ = 93.80 (3)°
  • V = 1914.4 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.82 mm−1
  • T = 298 K
  • 0.22 × 0.20 × 0.20 mm

Data collection

  • Rigaku CCD area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.841, T max = 0.854
  • 15784 measured reflections
  • 6858 independent reflections
  • 4753 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.158
  • S = 1.05
  • 6858 reflections
  • 519 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031533/zl2295sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031533/zl2295Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

supplementary crystallographic information

Comment

µ-Oxo-diiron(III) complexes are of considerable interest to chemists and biologists because of their interesting electronic structures and the magnetic interactions between the two iron(III) centers, and the role played by the oxo-bridged dinuclear iron centres in proteins (Kurtz et al., 1990; Vincent et al., 1990; Oyaizu et al., 2001). The Fe—Fe distances and the corresponding the Fe—O—Fe bond lengths and the angles are the most important factors that determine the electronic and magnetic properties of these complexes (Reedijk et al., 1999). It is important to note that the crystal structure of µ-oxo-bridged ferric salphen dimers [salphenH2= N,N'-o-phenylenebis(salicylideneimine)] depend strongly on the presence and type of lattice solvent molecules: [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001); [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993). By using a different solvent system, we obtained a new methanol dihydrate solvate of the µ-oxo-diiron(III) complex, [{FeIII(salphen)}2O].CH3OH.2H2O. Herein, the crystal structure of this solvate is presented.

The title complex is composed of one µ-oxo-diiron(III) unit of [{FeIII(salphen)}2O], one methanol molecule and two H2O molecules (Fig. 1). Each iron(III) atom, surrounded by each two coordinating N and O atoms from the salphen ligand, extends outwards of the mean N2O2 plane towards the bridging oxygen atom by as much as 0.588 (3) and 0.583 (3) Å for Fe(1) and Fe(2), respectively. The iron atoms thus substantially protrude from the ligand planes and show a typical five-coordinate square-pyramidal geometry. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O—Fe angle of 146.68 (16)° is almost equal to the value of 146.7 (4)° reported for [{FeIII(salphen)}2O].DMSO (Ashmawy et al., 1991), and is bigger than the values of 141 (1)° and 145.0 (3)° reported for [{FeIII(salphen)}2O].CH2Cl2.C4H10O (Oyaizu et al., 2001) and [{FeIII(salphen)}2O].C4H8O2 (Elmali et al., 1993), respectively. The Fe···Fe distance of 3.420 (3) Å is consistent with the values (3.35–3.55 Å) reported for µ-oxo-diiron(III) complexes with macrocyclic ligands (Oyaizu et al., 2001). One of the two interstitial water molecules in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively. Hydrogen atoms for the disordered water molecule could not be located and were omitted from the refinement.

There are some hydrogen-bonding interactions between methanol and water molecules, and between the water molecules and the salphen ligand. These hydrogen bonding interactions lead to a group of four oxygen atoms - two water and two methanol molecules - that are arranged around a crystallographic inversion center in a quadratic square pattern. The water molecules of the unit form additional bifurcated hydrogen bonds twoards the two oxygen atoms (O3, O4) of a salphen ligand of adjacent [{FeIII(salphen)}2O] complexes thus binding the complexes together by H-bonds via the square H2O/MeOH units (Table 1, Fig. 2). The oxygen atoms of the other salphen ligand of the complex (O1, O2) show signs of hydrogen bonding interactions with the disordered water molecule.

Experimental

Red prismatic crystals of the title complex were obtained by slow evaporation of a MeOH and H2O (V/V = 1:1, 10 mL) mixture of {Fe(salphen)(C2H5OH)2}Cl (0.1 mmol) in the dark at room temperature. The resulting crystals were collected, washed with H2O and MeOH, respectively, and dried in air. Melting point = 446.6 K. IR (KBr, cm-1): 3416(s), 2958(m), 2921(m), 2115(w), 1605(s), 1581(s), 1532(s), 1462(s), 1446(m), 1381(m), 1323(m), 1193(m), 1158(m), 1050(m), 745(m), 540(m).

Refinement

All non-H atoms were refined anisotropically. The (C)H atoms of the salphenH2 ligand were placed in calculated positions (C - H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.96 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C). The (O)H atoms of the methanol molecule was placed geometrically (O - H = 0.82 Å) with Uiso(H) = 1.5Ueq(O). The (O)H atoms of water molecule (O7) were located in a difference Fourier map and refined as riding with Uiso(H) = 1.2Ueq(O). The other water molecule in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively, summing up to 100%. Hydrogen atoms for the disordered water molecule could not be loctated and were omitted from the refinement.

Figures

Fig. 1.
The molecular structure of the title complex, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity.
Fig. 2.
Hydrogen bonding interactions of the title complex; the disordered water molecule is omitted for clarity. Symmetry code: (i) -x, -y+1, -z+1.

Crystal data

[Fe2(C20H14N2O2)2O]·CH4O·2H2OZ = 2
Mr = 824.44F(000) = 848
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Melting point: 446.6 K
a = 13.042 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.249 (3) ÅCell parameters from 7899 reflections
c = 13.724 (3) Åθ = 2.7–28.9°
α = 116.60 (3)°µ = 0.82 mm1
β = 110.50 (3)°T = 298 K
γ = 93.80 (3)°Prism, red
V = 1914.4 (12) Å30.22 × 0.20 × 0.20 mm

Data collection

Rigaku Model? CCD area-detector diffractometer6858 independent reflections
Radiation source: fine-focus sealed tube4753 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 25.3°, θmin = 3.0°
phi and ω scansh = −13→15
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −15→15
Tmin = 0.841, Tmax = 0.854l = −13→16
15784 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0832P)2] where P = (Fo2 + 2Fc2)/3
6858 reflections(Δ/σ)max < 0.001
519 parametersΔρmax = 0.59 e Å3
4 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe10.29364 (4)0.63148 (4)0.11270 (5)0.04383 (19)
Fe20.31765 (4)0.64507 (4)0.37482 (4)0.04180 (19)
O10.2687 (3)0.7573 (2)0.0824 (3)0.0654 (8)
O20.4527 (2)0.6843 (2)0.1582 (3)0.0634 (8)
O30.1917 (2)0.6451 (2)0.4169 (2)0.0561 (7)
O40.3020 (2)0.4836 (2)0.3307 (3)0.0613 (8)
O50.2735 (2)0.6584 (2)0.2435 (2)0.0512 (7)
O60.1044 (3)0.5981 (4)0.6541 (4)0.1005 (12)
H60.04140.60720.62560.151*
O70.1409 (4)0.4394 (4)0.4574 (3)0.1024 (12)
O80.4974 (9)0.0920 (8)0.9275 (10)0.103 (3)0.439 (4)
O90.4522 (8)0.1400 (10)0.8664 (11)0.077 (5)0.367 (14)
O100.5116 (18)0.0771 (17)0.8511 (15)0.068 (10)0.194 (14)
N10.1355 (2)0.5283 (3)−0.0380 (3)0.0431 (7)
N20.3115 (3)0.4595 (3)0.0466 (3)0.0433 (7)
N30.3882 (2)0.8219 (3)0.5153 (3)0.0432 (7)
N40.4954 (2)0.6660 (2)0.4389 (3)0.0408 (7)
C10.1774 (4)0.7752 (4)0.0167 (4)0.0558 (10)
C20.1821 (4)0.8892 (4)0.0354 (5)0.0755 (14)
H20.24640.95020.09550.091*
C30.0925 (5)0.9108 (5)−0.0347 (6)0.0900 (17)
H30.09710.9865−0.02150.108*
C4−0.0050 (5)0.8223 (5)−0.1247 (6)0.0900 (17)
H4−0.06410.8379−0.17320.108*
C5−0.0128 (4)0.7132 (4)−0.1409 (5)0.0703 (13)
H5−0.07940.6545−0.19920.084*
C60.0777 (3)0.6856 (4)−0.0714 (4)0.0529 (10)
C70.0635 (3)0.5673 (4)−0.0968 (3)0.0502 (10)
H7−0.00320.5130−0.16130.060*
C80.1129 (3)0.4083 (3)−0.0722 (3)0.0434 (9)
C90.0074 (3)0.3275 (4)−0.1464 (4)0.0544 (10)
H9−0.05570.3503−0.17870.065*
C10−0.0034 (4)0.2133 (4)−0.1720 (4)0.0692 (13)
H10−0.07400.1590−0.22260.083*
C110.0890 (4)0.1786 (4)−0.1238 (4)0.0688 (13)
H110.08000.1016−0.14040.083*
C120.1933 (4)0.2558 (4)−0.0520 (4)0.0597 (11)
H120.25530.2313−0.02030.072*
C130.2079 (3)0.3717 (3)−0.0258 (3)0.0426 (9)
C140.4083 (3)0.4325 (4)0.0679 (4)0.0511 (10)
H140.40540.35340.03670.061*
C150.5183 (3)0.5133 (4)0.1349 (3)0.0508 (10)
C160.6140 (4)0.4682 (5)0.1558 (4)0.0675 (13)
H160.60280.38840.12780.081*
C170.7222 (4)0.5385 (6)0.2158 (5)0.0794 (16)
H170.78390.50740.23130.095*
C180.7388 (4)0.6556 (6)0.2532 (4)0.0799 (16)
H180.81250.70310.29210.096*
C190.6498 (4)0.7042 (5)0.2346 (4)0.0702 (13)
H190.66350.78380.26040.084*
C200.5363 (3)0.6337 (4)0.1761 (4)0.0548 (11)
C210.1505 (3)0.7323 (4)0.4700 (4)0.0517 (10)
C220.0402 (4)0.7060 (4)0.4609 (4)0.0624 (12)
H22−0.00270.62840.41620.075*
C23−0.0049 (4)0.7924 (5)0.5166 (5)0.0818 (16)
H23−0.07770.77250.50990.098*
C240.0557 (5)0.9092 (5)0.5830 (6)0.101 (2)
H240.02290.96760.61770.121*
C250.1636 (4)0.9372 (4)0.5965 (5)0.0924 (18)
H250.20601.01510.64490.111*
C260.2139 (4)0.8500 (4)0.5382 (4)0.0590 (11)
C270.3295 (4)0.8878 (4)0.5621 (4)0.0578 (11)
H270.36620.96680.61610.069*
C280.5039 (3)0.8682 (3)0.5481 (3)0.0424 (9)
C290.5628 (3)0.9868 (3)0.6164 (4)0.0525 (10)
H290.52591.04280.64640.063*
C300.6742 (4)1.0215 (4)0.6398 (4)0.0614 (11)
H300.71241.10070.68470.074*
C310.7297 (4)0.9379 (4)0.5960 (4)0.0645 (12)
H310.80550.96140.61250.077*
C320.6732 (3)0.8196 (4)0.5278 (4)0.0558 (11)
H320.71050.76440.49720.067*
C330.5609 (3)0.7839 (3)0.5052 (3)0.0427 (9)
C340.5450 (3)0.5817 (3)0.4215 (3)0.0449 (9)
H340.62390.60260.45400.054*
C350.4890 (3)0.4598 (3)0.3569 (3)0.0432 (9)
C360.5582 (4)0.3811 (3)0.3384 (4)0.0558 (10)
H360.63620.41060.36960.067*
C370.5117 (4)0.2625 (4)0.2752 (4)0.0658 (12)
H370.55770.21180.26250.079*
C380.3965 (4)0.2190 (4)0.2305 (4)0.0693 (13)
H380.36490.13840.18660.083*
C390.3272 (4)0.2930 (4)0.2499 (4)0.0691 (13)
H390.24980.26150.22090.083*
C400.3718 (3)0.4161 (3)0.3133 (4)0.0503 (10)
C410.1861 (5)0.7092 (5)0.7313 (5)0.0967 (18)
H41A0.15000.76820.76460.145*
H41B0.21800.72740.68590.145*
H41C0.24530.70680.79520.145*
H7WB0.14940.50260.53660.116*
H7WA0.17250.49610.44290.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0386 (3)0.0414 (3)0.0389 (3)0.0049 (3)0.0090 (2)0.0168 (3)
Fe20.0351 (3)0.0388 (3)0.0406 (3)0.0037 (2)0.0097 (2)0.0171 (3)
O10.0621 (19)0.0489 (16)0.0628 (19)0.0002 (14)0.0035 (15)0.0300 (15)
O20.0445 (16)0.0534 (17)0.071 (2)0.0017 (14)0.0187 (15)0.0212 (15)
O30.0485 (16)0.0500 (16)0.0631 (18)0.0052 (14)0.0257 (14)0.0227 (14)
O40.0406 (15)0.0438 (15)0.086 (2)0.0047 (13)0.0159 (15)0.0312 (15)
O50.0489 (15)0.0534 (15)0.0409 (15)0.0117 (13)0.0140 (12)0.0198 (13)
O60.082 (3)0.105 (3)0.094 (3)0.013 (2)0.025 (2)0.044 (2)
O70.104 (3)0.107 (3)0.084 (3)−0.006 (2)0.033 (2)0.048 (2)
O80.151 (9)0.083 (6)0.102 (7)0.030 (6)0.061 (7)0.064 (6)
O90.056 (6)0.060 (6)0.130 (9)0.008 (5)0.036 (6)0.063 (6)
O100.069 (14)0.057 (12)0.036 (10)−0.037 (10)0.033 (8)−0.009 (7)
N10.0367 (17)0.0464 (18)0.0414 (18)0.0088 (15)0.0140 (14)0.0206 (15)
N20.0392 (17)0.0455 (17)0.0414 (18)0.0088 (15)0.0137 (14)0.0218 (15)
N30.0376 (17)0.0428 (17)0.0430 (18)0.0070 (15)0.0128 (15)0.0204 (14)
N40.0364 (16)0.0388 (16)0.0364 (17)0.0026 (14)0.0103 (14)0.0154 (14)
C10.064 (3)0.051 (2)0.057 (3)0.015 (2)0.025 (2)0.032 (2)
C20.077 (3)0.064 (3)0.087 (4)0.015 (3)0.026 (3)0.046 (3)
C30.092 (4)0.077 (4)0.136 (5)0.038 (3)0.053 (4)0.075 (4)
C40.072 (4)0.097 (4)0.128 (5)0.038 (3)0.032 (4)0.082 (4)
C50.053 (3)0.078 (3)0.083 (3)0.026 (3)0.021 (2)0.047 (3)
C60.054 (3)0.056 (2)0.054 (3)0.020 (2)0.023 (2)0.031 (2)
C70.037 (2)0.058 (2)0.042 (2)0.0086 (19)0.0101 (17)0.0205 (19)
C80.039 (2)0.040 (2)0.039 (2)0.0032 (17)0.0140 (17)0.0138 (17)
C90.040 (2)0.056 (3)0.050 (2)0.001 (2)0.0145 (19)0.019 (2)
C100.057 (3)0.052 (3)0.063 (3)−0.014 (2)0.015 (2)0.012 (2)
C110.075 (3)0.043 (2)0.072 (3)0.000 (2)0.024 (3)0.024 (2)
C120.065 (3)0.049 (2)0.060 (3)0.012 (2)0.021 (2)0.029 (2)
C130.044 (2)0.040 (2)0.035 (2)0.0047 (18)0.0138 (17)0.0149 (17)
C140.054 (3)0.057 (2)0.051 (2)0.020 (2)0.022 (2)0.033 (2)
C150.038 (2)0.073 (3)0.043 (2)0.013 (2)0.0155 (19)0.032 (2)
C160.057 (3)0.105 (4)0.067 (3)0.036 (3)0.033 (2)0.057 (3)
C170.043 (3)0.146 (5)0.062 (3)0.033 (3)0.022 (2)0.061 (4)
C180.038 (3)0.131 (5)0.049 (3)0.004 (3)0.013 (2)0.035 (3)
C190.047 (3)0.083 (3)0.051 (3)−0.005 (3)0.016 (2)0.019 (2)
C200.038 (2)0.076 (3)0.043 (2)0.007 (2)0.0164 (19)0.026 (2)
C210.040 (2)0.062 (3)0.045 (2)0.007 (2)0.0121 (19)0.026 (2)
C220.044 (2)0.075 (3)0.056 (3)0.009 (2)0.018 (2)0.027 (2)
C230.042 (3)0.102 (4)0.072 (3)0.013 (3)0.020 (3)0.024 (3)
C240.058 (3)0.092 (4)0.119 (5)0.027 (3)0.044 (3)0.022 (4)
C250.067 (3)0.059 (3)0.113 (5)0.012 (3)0.040 (3)0.012 (3)
C260.046 (2)0.055 (3)0.067 (3)0.013 (2)0.024 (2)0.023 (2)
C270.051 (2)0.043 (2)0.059 (3)0.006 (2)0.018 (2)0.015 (2)
C280.040 (2)0.042 (2)0.035 (2)0.0020 (17)0.0100 (17)0.0169 (17)
C290.054 (3)0.039 (2)0.051 (2)0.0057 (19)0.019 (2)0.0158 (18)
C300.052 (3)0.047 (2)0.056 (3)−0.007 (2)0.014 (2)0.013 (2)
C310.042 (2)0.058 (3)0.070 (3)−0.006 (2)0.020 (2)0.019 (2)
C320.042 (2)0.048 (2)0.057 (3)0.0008 (19)0.018 (2)0.014 (2)
C330.038 (2)0.041 (2)0.036 (2)−0.0014 (17)0.0097 (17)0.0158 (17)
C340.039 (2)0.049 (2)0.043 (2)0.0033 (18)0.0144 (18)0.0241 (18)
C350.048 (2)0.041 (2)0.038 (2)0.0071 (18)0.0160 (18)0.0213 (17)
C360.060 (3)0.049 (2)0.059 (3)0.017 (2)0.024 (2)0.029 (2)
C370.077 (3)0.058 (3)0.070 (3)0.030 (3)0.034 (3)0.035 (2)
C380.076 (3)0.040 (2)0.070 (3)0.011 (2)0.014 (3)0.024 (2)
C390.052 (3)0.050 (3)0.080 (3)0.001 (2)0.005 (2)0.031 (2)
C400.048 (2)0.041 (2)0.052 (2)0.0055 (19)0.0114 (19)0.0236 (19)
C410.082 (4)0.111 (5)0.085 (4)0.017 (4)0.027 (3)0.047 (4)

Geometric parameters (Å, °)

Fe1—O51.786 (3)C12—H120.9300
Fe1—O11.912 (3)C14—C151.429 (5)
Fe1—O21.921 (3)C14—H140.9300
Fe1—N22.106 (3)C15—C201.404 (6)
Fe1—N12.123 (3)C15—C161.413 (5)
Fe2—O51.784 (3)C16—C171.365 (7)
Fe2—O41.919 (3)C16—H160.9300
Fe2—O31.922 (3)C17—C181.372 (7)
Fe2—N32.116 (3)C17—H170.9300
Fe2—N42.119 (3)C18—C191.366 (7)
O1—C11.329 (5)C18—H180.9300
O2—C201.325 (5)C19—C201.421 (6)
O3—C211.327 (5)C19—H190.9300
O4—C401.325 (5)C21—C261.403 (6)
O6—C411.424 (6)C21—C221.405 (6)
O6—H60.8200C22—C231.364 (6)
O7—H7WB0.9910C22—H220.9300
O7—H7WA0.9611C23—C241.386 (7)
O8—O101.063 (14)C23—H230.9300
O8—O91.280 (12)C24—C251.356 (7)
O9—O101.18 (2)C24—H240.9300
N1—C71.307 (5)C25—C261.430 (6)
N1—C81.416 (5)C25—H250.9300
N2—C141.304 (5)C26—C271.428 (6)
N2—C131.409 (5)C27—H270.9300
N3—C271.301 (5)C28—C291.398 (5)
N3—C281.418 (5)C28—C331.405 (5)
N4—C341.300 (5)C29—C301.371 (6)
N4—C331.416 (4)C29—H290.9300
C1—C61.403 (6)C30—C311.388 (6)
C1—C21.407 (6)C30—H300.9300
C2—C31.370 (7)C31—C321.387 (6)
C2—H20.9300C31—H310.9300
C3—C41.386 (8)C32—C331.387 (5)
C3—H30.9300C32—H320.9300
C4—C51.351 (7)C34—C351.427 (5)
C4—H40.9300C34—H340.9300
C5—C61.421 (6)C35—C401.400 (5)
C5—H50.9300C35—C361.418 (5)
C6—C71.428 (6)C36—C371.369 (6)
C7—H70.9300C36—H360.9300
C8—C91.387 (5)C37—C381.374 (6)
C8—C131.408 (5)C37—H370.9300
C9—C101.376 (6)C38—C391.379 (6)
C9—H90.9300C38—H380.9300
C10—C111.374 (7)C39—C401.416 (6)
C10—H100.9300C39—H390.9300
C11—C121.357 (6)C41—H41A0.9600
C11—H110.9300C41—H41B0.9600
C12—C131.393 (5)C41—H41C0.9600
O5—Fe1—O1109.47 (13)C20—C15—C16118.4 (4)
O5—Fe1—O2109.06 (13)C20—C15—C14123.6 (4)
O1—Fe1—O289.13 (13)C16—C15—C14117.9 (4)
O5—Fe1—N2102.31 (12)C17—C16—C15121.9 (5)
O1—Fe1—N2147.27 (13)C17—C16—H16119.0
O2—Fe1—N287.79 (13)C15—C16—H16119.0
O5—Fe1—N1106.82 (12)C16—C17—C18119.1 (5)
O1—Fe1—N187.13 (12)C16—C17—H17120.4
O2—Fe1—N1143.05 (12)C18—C17—H17120.4
N2—Fe1—N176.19 (12)C19—C18—C17121.7 (5)
O5—Fe2—O4110.14 (13)C19—C18—H18119.1
O5—Fe2—O3107.68 (12)C17—C18—H18119.1
O4—Fe2—O390.01 (12)C18—C19—C20120.3 (5)
O5—Fe2—N3102.33 (12)C18—C19—H19119.9
O4—Fe2—N3146.57 (13)C20—C19—H19119.9
O3—Fe2—N387.54 (12)O2—C20—C15123.3 (4)
O5—Fe2—N4106.81 (12)O2—C20—C19118.2 (4)
O4—Fe2—N487.08 (12)C15—C20—C19118.5 (4)
O3—Fe2—N4144.17 (12)O3—C21—C26122.6 (3)
N3—Fe2—N475.93 (12)O3—C21—C22118.8 (4)
C1—O1—Fe1133.1 (3)C26—C21—C22118.5 (4)
C20—O2—Fe1131.4 (3)C23—C22—C21121.0 (5)
C21—O3—Fe2130.6 (3)C23—C22—H22119.5
C40—O4—Fe2131.8 (3)C21—C22—H22119.5
Fe2—O5—Fe1146.68 (16)C22—C23—C24121.4 (5)
C41—O6—H6109.5C22—C23—H23119.3
H7WB—O7—H7WA90.6C24—C23—H23119.3
O10—O8—O959.4 (14)C25—C24—C23119.0 (5)
O10—O9—O851.1 (9)C25—C24—H24120.5
O8—O10—O969.5 (12)C23—C24—H24120.5
C7—N1—C8121.2 (3)C24—C25—C26121.7 (5)
C7—N1—Fe1125.4 (3)C24—C25—H25119.2
C8—N1—Fe1113.4 (2)C26—C25—H25119.2
C14—N2—C13120.9 (3)C21—C26—C27124.1 (4)
C14—N2—Fe1124.9 (3)C21—C26—C25118.3 (4)
C13—N2—Fe1114.2 (2)C27—C26—C25117.3 (4)
C27—N3—C28121.3 (3)N3—C27—C26126.0 (4)
C27—N3—Fe2123.7 (3)N3—C27—H27117.0
C28—N3—Fe2114.8 (2)C26—C27—H27117.0
C34—N4—C33120.2 (3)C29—C28—C33119.3 (3)
C34—N4—Fe2125.6 (2)C29—C28—N3126.0 (3)
C33—N4—Fe2114.2 (2)C33—C28—N3114.7 (3)
O1—C1—C6123.0 (4)C30—C29—C28120.9 (4)
O1—C1—C2118.1 (4)C30—C29—H29119.6
C6—C1—C2118.8 (4)C28—C29—H29119.6
C3—C2—C1120.3 (5)C29—C30—C31119.6 (4)
C3—C2—H2119.9C29—C30—H30120.2
C1—C2—H2119.9C31—C30—H30120.2
C2—C3—C4121.5 (5)C32—C31—C30120.7 (4)
C2—C3—H3119.2C32—C31—H31119.7
C4—C3—H3119.2C30—C31—H31119.7
C5—C4—C3119.0 (5)C33—C32—C31119.9 (4)
C5—C4—H4120.5C33—C32—H32120.0
C3—C4—H4120.5C31—C32—H32120.0
C4—C5—C6121.9 (5)C32—C33—C28119.6 (3)
C4—C5—H5119.1C32—C33—N4125.0 (3)
C6—C5—H5119.1C28—C33—N4115.4 (3)
C1—C6—C5118.4 (4)N4—C34—C35125.7 (3)
C1—C6—C7123.4 (4)N4—C34—H34117.2
C5—C6—C7118.2 (4)C35—C34—H34117.2
N1—C7—C6126.0 (4)C40—C35—C36119.8 (4)
N1—C7—H7117.0C40—C35—C34123.4 (3)
C6—C7—H7117.0C36—C35—C34116.8 (3)
C9—C8—C13119.3 (4)C37—C36—C35121.0 (4)
C9—C8—N1125.4 (4)C37—C36—H36119.5
C13—C8—N1115.2 (3)C35—C36—H36119.5
C10—C9—C8119.7 (4)C36—C37—C38119.6 (4)
C10—C9—H9120.1C36—C37—H37120.2
C8—C9—H9120.1C38—C37—H37120.2
C11—C10—C9120.7 (4)C37—C38—C39121.0 (4)
C11—C10—H10119.6C37—C38—H38119.5
C9—C10—H10119.6C39—C38—H38119.5
C12—C11—C10120.6 (4)C38—C39—C40121.1 (4)
C12—C11—H11119.7C38—C39—H39119.4
C10—C11—H11119.7C40—C39—H39119.5
C11—C12—C13120.3 (4)O4—C40—C35123.5 (3)
C11—C12—H12119.9O4—C40—C39118.9 (4)
C13—C12—H12119.8C35—C40—C39117.6 (4)
C12—C13—C8119.3 (4)O6—C41—H41A109.5
C12—C13—N2125.6 (4)O6—C41—H41B109.5
C8—C13—N2115.1 (3)H41A—C41—H41B109.5
N2—C14—C15126.0 (4)O6—C41—H41C109.5
N2—C14—H14117.0H41A—C41—H41C109.5
C15—C14—H14117.0H41B—C41—H41C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6···O7i0.822.152.916 (6)156.
O7—H7WB···O60.991.872.808 (6)158.
O7—H7WA···O30.962.173.090 (5)160.
O7—H7WA···O40.962.623.330 (5)131.

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2295).

References

  • Ashmawy, F. M. & Ujaimi, A. R. (1991). Inorg. Chim. Acta, 187, 155–158.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr.203, 275–278.
  • Higashi, T. (1995). ABSCOR Rigaku Coporation, Tokyo, Japan.
  • Kurtz, D. M. Jr (1990). Chem. Rev.90, 585–606.
  • Oyaizu, K., Dewi, E. L. & Tsuchida, E. (2001). Inorg. Chim. Acta, 321, 205–208.
  • Reedijk, J. & Bouwman, E. (1999). Bioinorganic Catalysis, 2nd ed. New York: Marcel Dekker.
  • Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Vincent, J. B., Oliver-Lilley, G. L. & Averill, B. A. (1990). Chem. Rev.90, 1447–1467.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography