PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1083.
Published online 2010 August 11. doi:  10.1107/S1600536810031387
PMCID: PMC3007941

(Acridine-κN)(dimethyl sulfoxide-κS)diiodidoplatinum(II)

Abstract

In the title complex, [PtI2(C13H9N)(C2H6OS)], the PtII atom is four-coordinated in an essentially square-planar environment defined by the N atom of the acridine ligand, the S atom of dimethyl sulfoxide, and two iodide ions. The dihedral angle between the nearly planar PtI2NS unit [maximum deviation = 0.083 (2) Å] and the acridine ligand [maximum deviation = 0.038 (6) Å] is 89.29 (7)°. In the crystal structure, the complex mol­ecules are arranged in a V-shaped packing pattern along the c axis and linked by inter­molecular C—H(...)O contacts into supra­molecular chains. There are also several inter­molecular π–π inter­actions between the six-membered rings, with a shortest ring centroid–centroid distance of 3.804 (5) Å.

Related literature

For the crystal structures of [PtCl2(acr)2] (acr = acridine) and [PtCl(pic)(DMSO)] (pic = pyridine-2-carboxyl­ate, DMSO = dimethyl sulfoxide), see: Ha (2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1083-scheme1.jpg

Experimental

Crystal data

  • [PtI2(C13H9N)(C2H6OS)]
  • M r = 706.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1083-efi1.jpg
  • a = 8.4800 (6) Å
  • b = 23.8181 (17) Å
  • c = 9.9036 (7) Å
  • β = 114.492 (1)°
  • V = 1820.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.21 mm−1
  • T = 200 K
  • 0.20 × 0.19 × 0.06 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.468, T max = 1.000
  • 11217 measured reflections
  • 3573 independent reflections
  • 2809 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.083
  • S = 1.03
  • 3573 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 2.10 e Å−3
  • Δρmin = −1.16 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031387/tk2697sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031387/tk2697Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

Single crystals of the title complex, [PtI2(C13H9N)(C2H6OS)] (where C13H9N is acridine (acr) and C2H6OS is dimethyl sulfoxide (DMSO)), were unexpectedly obtained from a DMSO solution of the dark-yellow reaction product [PtI2(acr)2] held at 353 K. It seems that an acridine ligand of the complex [PtI2(acr)2] was replaced by a DMSO molecule during crystallization, whereas the analogous Pt complex [PtCl2(acr)2] crystallized without substitution in a DMSO solution at 353 K (Ha, 2010a). In the title complex, the PtII atom is four-coordinated in an essentially square-planar environment defined by the N atom of the acridine ligand, the S atom of the dimethyl sulfoxide molecule and two iodide ions (Table 1 and Fig. 1). The dihedral angle between the nearly planar PtI2NS moiety and acridine ligand is 89.29 (7)°. The I atoms are in trans conformation with respect to each other (<I1—Pt1—I2 = 174.03 (2)°) and almost perpendicular to the acridine ligand, with N1—Pt1—I1/2 bond angles of 85.75 (16)° and 89.21 (16)°. The Pt—S bond length (2.222 (2) Å) is comparable to those observed in the Pt-DMSO complex [PtCl(pic)(DMSO)] (2.202 (2) Å, where pic is pyridine-2-carboxylate (Ha, 2010b). In the crystal structure, the complexes are arranged in a V-shaped packing pattern along the c axis and linked by intermolecular C—H···O contacts into one-dimensional supramolecular chains (Table 2 and Fig. 2). There are also numerous intermolecular π-π interactions between six-membered rings, with the shortest ring centroid-centroid distance being 3.804 (5) Å.

Experimental

To a solution of K2PtCl4 (0.2017 g, 0.486 mmol) and KI (0.6410 g, 3.861 mmol) in H2O (30 ml) was added acridine (0.1903 g, 1.062 mmol) followed by refluxing for 3 h. The precipitate was then separated by filtration, washed with H2O and EtOH, and dried under vacuum, to give a dark-yellow powder (0.2772 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide at 353 K.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C)]. The highest peak (2.10 e Å-3) and the deepest hole (-1.16 e Å-3) in the difference Fourier map were located 1.05 and 1.64 Å from the atoms Pt1 and I2, respectively.

Figures

Fig. 1.
The molecular structure of the title complex showing atom labelling. Displacement ellipsoids drawn at the 40% probability level for non-H atoms.
Fig. 2.
View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[PtI2(C13H9N)(C2H6OS)]F(000) = 1280
Mr = 706.23Dx = 2.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5088 reflections
a = 8.4800 (6) Åθ = 2.6–26.0°
b = 23.8181 (17) ŵ = 11.21 mm1
c = 9.9036 (7) ÅT = 200 K
β = 114.492 (1)°Block, yellow
V = 1820.3 (2) Å30.20 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer3573 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→7
Tmin = 0.468, Tmax = 1.000k = −28→29
11217 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0324P)2] where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 2.10 e Å3
0 restraintsΔρmin = −1.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.22004 (4)0.152591 (13)0.21512 (3)0.02504 (11)
I10.44358 (8)0.19167 (3)0.12073 (8)0.04961 (19)
I20.02342 (7)0.10938 (2)0.33373 (6)0.03254 (15)
S10.0408 (2)0.22130 (9)0.0922 (2)0.0282 (4)
O1−0.0003 (7)0.2220 (3)−0.0675 (6)0.0410 (15)
N10.3965 (8)0.0876 (3)0.3075 (7)0.0282 (15)
C10.5309 (9)0.0945 (3)0.4428 (8)0.0247 (17)
C20.5382 (11)0.1408 (4)0.5345 (9)0.036 (2)
H20.44740.16780.50200.043*
C30.6736 (11)0.1471 (4)0.6683 (10)0.039 (2)
H30.67540.17800.72950.047*
C40.8130 (11)0.1081 (4)0.7186 (10)0.046 (3)
H40.90810.11360.81180.056*
C50.8103 (10)0.0635 (4)0.6344 (10)0.042 (2)
H50.90440.03780.66860.050*
C60.6695 (10)0.0543 (4)0.4955 (9)0.034 (2)
C70.6615 (10)0.0093 (4)0.4048 (10)0.039 (2)
H70.7548−0.01670.43670.047*
C80.5221 (10)0.0007 (3)0.2686 (9)0.0313 (19)
C90.5072 (11)−0.0455 (4)0.1740 (11)0.042 (2)
H90.5958−0.07320.20450.050*
C100.3711 (12)−0.0513 (4)0.0421 (10)0.045 (2)
H100.3649−0.0821−0.02070.054*
C110.2376 (11)−0.0108 (4)−0.0020 (9)0.037 (2)
H110.1403−0.0152−0.09430.044*
C120.2453 (10)0.0344 (4)0.0852 (9)0.035 (2)
H120.15380.06100.05290.042*
C130.3888 (10)0.0418 (3)0.2234 (9)0.0296 (18)
C140.1268 (10)0.2874 (4)0.1699 (9)0.036 (2)
H14A0.23940.29280.16610.055*
H14B0.14150.28870.27340.055*
H14C0.04710.31720.11340.055*
C15−0.1582 (10)0.2226 (4)0.1040 (9)0.038 (2)
H15A−0.22750.25400.04530.057*
H15B−0.13950.22720.20790.057*
H15C−0.21970.18720.06550.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.02442 (17)0.0238 (2)0.02705 (18)0.00111 (12)0.01078 (13)0.00131 (13)
I10.0400 (4)0.0479 (4)0.0741 (5)0.0065 (3)0.0368 (3)0.0194 (3)
I20.0375 (3)0.0295 (3)0.0353 (3)−0.0020 (2)0.0198 (2)0.0003 (2)
S10.0316 (11)0.0290 (12)0.0239 (10)0.0046 (8)0.0113 (8)0.0022 (8)
O10.050 (4)0.052 (4)0.020 (3)0.011 (3)0.014 (3)0.005 (3)
N10.028 (4)0.019 (4)0.039 (4)0.000 (3)0.015 (3)0.003 (3)
C10.017 (4)0.021 (5)0.029 (4)0.002 (3)0.002 (3)0.009 (3)
C20.039 (5)0.028 (5)0.035 (5)0.000 (4)0.009 (4)0.006 (4)
C30.042 (5)0.034 (6)0.032 (5)−0.011 (4)0.007 (4)0.004 (4)
C40.035 (5)0.054 (7)0.033 (5)−0.012 (5)−0.003 (4)0.013 (5)
C50.027 (5)0.047 (7)0.040 (5)−0.001 (4)0.002 (4)0.013 (5)
C60.031 (5)0.037 (6)0.037 (5)−0.005 (4)0.016 (4)0.008 (4)
C70.034 (5)0.033 (6)0.053 (6)0.009 (4)0.020 (4)0.016 (4)
C80.028 (4)0.021 (5)0.048 (5)0.000 (3)0.018 (4)0.008 (4)
C90.047 (6)0.028 (6)0.062 (6)0.004 (4)0.034 (5)0.006 (5)
C100.070 (7)0.027 (6)0.051 (6)−0.008 (5)0.037 (5)−0.013 (4)
C110.036 (5)0.037 (6)0.033 (5)−0.003 (4)0.011 (4)−0.002 (4)
C120.035 (5)0.028 (5)0.042 (5)−0.001 (4)0.015 (4)0.001 (4)
C130.035 (5)0.024 (5)0.035 (5)0.007 (4)0.020 (4)0.006 (4)
C140.042 (5)0.029 (6)0.035 (5)0.002 (4)0.013 (4)0.003 (4)
C150.031 (5)0.034 (6)0.043 (5)0.006 (4)0.009 (4)0.006 (4)

Geometric parameters (Å, °)

Pt1—N12.083 (6)C6—C71.381 (12)
Pt1—S12.222 (2)C7—C81.392 (11)
Pt1—I12.6082 (6)C7—H70.9500
Pt1—I22.6160 (6)C8—C91.417 (12)
S1—O11.472 (5)C8—C131.420 (10)
S1—C151.740 (8)C9—C101.344 (13)
S1—C141.771 (9)C9—H90.9500
N1—C131.358 (10)C10—C111.410 (12)
N1—C11.362 (9)C10—H100.9500
C1—C21.414 (11)C11—C121.364 (11)
C1—C61.435 (11)C11—H110.9500
C2—C31.355 (11)C12—C131.415 (11)
C2—H20.9500C12—H120.9500
C3—C41.420 (12)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.345 (13)C14—H14C0.9800
C4—H40.9500C15—H15A0.9800
C5—C61.416 (11)C15—H15B0.9800
C5—H50.9500C15—H15C0.9800
N1—Pt1—S1172.71 (17)C6—C7—C8122.5 (8)
N1—Pt1—I185.75 (16)C6—C7—H7118.7
S1—Pt1—I188.55 (5)C8—C7—H7118.7
N1—Pt1—I289.21 (16)C7—C8—C9124.3 (8)
S1—Pt1—I296.73 (5)C7—C8—C13116.7 (8)
I1—Pt1—I2174.03 (2)C9—C8—C13119.0 (8)
O1—S1—C15105.5 (4)C10—C9—C8121.8 (8)
O1—S1—C14109.1 (4)C10—C9—H9119.1
C15—S1—C14101.0 (4)C8—C9—H9119.1
O1—S1—Pt1113.6 (3)C9—C10—C11119.1 (8)
C15—S1—Pt1116.0 (3)C9—C10—H10120.4
C14—S1—Pt1110.6 (3)C11—C10—H10120.4
C13—N1—C1120.5 (7)C12—C11—C10121.4 (8)
C13—N1—Pt1119.0 (5)C12—C11—H11119.3
C1—N1—Pt1119.9 (5)C10—C11—H11119.3
N1—C1—C2121.4 (7)C11—C12—C13120.4 (8)
N1—C1—C6120.2 (7)C11—C12—H12119.8
C2—C1—C6118.4 (7)C13—C12—H12119.8
C3—C2—C1120.5 (8)N1—C13—C12119.8 (7)
C3—C2—H2119.7N1—C13—C8122.0 (7)
C1—C2—H2119.7C12—C13—C8118.2 (8)
C2—C3—C4121.0 (9)S1—C14—H14A109.5
C2—C3—H3119.5S1—C14—H14B109.5
C4—C3—H3119.5H14A—C14—H14B109.5
C5—C4—C3120.0 (8)S1—C14—H14C109.5
C5—C4—H4120.0H14A—C14—H14C109.5
C3—C4—H4120.0H14B—C14—H14C109.5
C4—C5—C6121.1 (8)S1—C15—H15A109.5
C4—C5—H5119.5S1—C15—H15B109.5
C6—C5—H5119.5H15A—C15—H15B109.5
C7—C6—C5123.1 (8)S1—C15—H15C109.5
C7—C6—C1117.9 (7)H15A—C15—H15C109.5
C5—C6—C1118.9 (8)H15B—C15—H15C109.5
I1—Pt1—S1—O157.2 (3)C2—C1—C6—C7−179.7 (7)
I2—Pt1—S1—O1−125.6 (3)N1—C1—C6—C5177.9 (7)
I1—Pt1—S1—C15179.8 (3)C2—C1—C6—C5−2.1 (11)
I2—Pt1—S1—C15−3.0 (3)C5—C6—C7—C8179.9 (8)
I1—Pt1—S1—C14−65.9 (3)C1—C6—C7—C8−2.6 (12)
I2—Pt1—S1—C14111.3 (3)C6—C7—C8—C9−178.6 (7)
I1—Pt1—N1—C13−87.4 (5)C6—C7—C8—C132.2 (12)
I2—Pt1—N1—C1395.8 (5)C7—C8—C9—C10−178.7 (8)
I1—Pt1—N1—C184.1 (5)C13—C8—C9—C100.6 (12)
I2—Pt1—N1—C1−92.8 (5)C8—C9—C10—C11−1.4 (13)
C13—N1—C1—C2−177.6 (7)C9—C10—C11—C121.2 (13)
Pt1—N1—C1—C211.0 (9)C10—C11—C12—C13−0.1 (13)
C13—N1—C1—C62.4 (11)C1—N1—C13—C12178.0 (7)
Pt1—N1—C1—C6−169.0 (5)Pt1—N1—C13—C12−10.6 (9)
N1—C1—C2—C3−179.6 (7)C1—N1—C13—C8−2.9 (11)
C6—C1—C2—C30.4 (12)Pt1—N1—C13—C8168.6 (6)
C1—C2—C3—C41.3 (13)C11—C12—C13—N1178.5 (7)
C2—C3—C4—C5−1.3 (14)C11—C12—C13—C8−0.7 (12)
C3—C4—C5—C6−0.4 (13)C7—C8—C13—N10.6 (11)
C4—C5—C6—C7179.6 (8)C9—C8—C13—N1−178.7 (7)
C4—C5—C6—C12.1 (12)C7—C8—C13—C12179.8 (7)
N1—C1—C6—C70.3 (11)C9—C8—C13—C120.5 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.982.363.209 (10)145.
C15—H15B···O1i0.982.373.241 (10)147.

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2697).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ha, K. (2010a). Z. Kristallogr. New Cryst. Struct.225, 323–324.
  • Ha, K. (2010b). Acta Cryst. E66, m295. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography