PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2336.
Published online 2010 August 18. doi:  10.1107/S1600536810032435
PMCID: PMC3007940

4-(4-Chloro­phen­yl)-1-methyl-3-trifluoro­methyl-1H-pyrazol-5-amine

Abstract

The five-membered ring of the title compound, C11H9ClF3N3, is almost planar (r.m.s. deviation = 0.002 Å) and the phenyl­ene ring is aligned at 44.8 (1)°. The N atom of the amino substituent shows a pyramidal geometry and is a hydrogen-bond donor to a Cl atom and to a ring N atom, which together generate a layer motif.

Related literature

For the synthesis of the title compound, see: Coispeau (1977 [triangle]); Nishiwaki et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2336-scheme1.jpg

Experimental

Crystal data

  • C11H9ClF3N3
  • M r = 275.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2336-efi1.jpg
  • a = 5.8958 (5) Å
  • b = 16.8618 (13) Å
  • c = 12.1087 (10) Å
  • β = 98.459 (1)°
  • V = 1190.68 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.864, T max = 1.000
  • 5716 measured reflections
  • 2581 independent reflections
  • 1769 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.119
  • S = 1.02
  • 2581 reflections
  • 172 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810032435/hg2700sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032435/hg2700Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hunan University of Science and Engineering and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (Scheme I) is first mentioned in a synthesis by the cyclocondensation of hydrazines with 4,4,4-trifluoro-2-arylacetoacetonitriles in the context of colorants for polyacrylonitriles (Coispeau, 1977). The structure has been eluciated by carbon-13 NMR spectroscopy (Nishiwaki et al., 1995). We have used a modification of the published procedure to synthesize the compound, which is intended for further study on its pharmaceutical activity. There are no other reports on this compound aside from these studies.

Experimental

Sodium metal (0.35 g, 15 mmol) was dissolved in absolute ethanol (50 ml). To this solution was added 2-(4-chlorophenyl)acetonitrile (1.52 g, 10 mmol) followed by ethyl trifluoroacetate (1.42 g, 10 mmol). The solution was heated for 3 h. The solution was concentrated under vacuum. To the residue was added acetic acid (20 ml) followed by methylhydrazine (0.55 g, 12 mmol). The mixture was stirred for 12 h. The solution was again concentrated under vacuum. The residue was treated with water (30 ml) and the organic compound was extracted with ethyl acetate. The organic phase was washed with saturated sodium bicarbonate (230 ml) and then dried over sodium sulfate. The solvent was removed and the residue was chromatographed on a silica gel column with ethyl acetate:petroleum ether (1:10) as eluant. This gave 2 g (70%) of product as a yellow solid, which was recrystallized from ethyl acetate.

Refinement

Carbon bound H-atoms were positioned geometrically and refined using the riding model, and with C–H = 0.93 to 0.96 Å and U(H) set to 1.2–1.5 Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C11H9ClF3N3 showing displacement ellipsoids at the 50% probability level. H-atoms are drawn as spheres of arbitrary radius.

Crystal data

C11H9ClF3N3F(000) = 560
Mr = 275.66Dx = 1.538 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2152 reflections
a = 5.8958 (5) Åθ = 2.5–26.6°
b = 16.8618 (13) ŵ = 0.34 mm1
c = 12.1087 (10) ÅT = 293 K
β = 98.459 (1)°Block, yellow
V = 1190.68 (17) Å30.40 × 0.40 × 0.20 mm
Z = 4

Data collection

Bruker SMART area-detector diffractometer2581 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.864, Tmax = 1.000k = −21→10
5716 measured reflectionsl = −15→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1525P] where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = −0.26 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.24293 (10)0.63048 (3)0.86611 (5)0.03743 (19)
F10.9033 (3)0.36727 (9)0.43732 (12)0.0619 (5)
F20.7674 (3)0.46344 (8)0.52371 (12)0.0503 (4)
F30.5700 (3)0.35880 (11)0.48636 (14)0.0685 (5)
N11.1139 (3)0.27925 (10)0.73828 (14)0.0272 (4)
N21.0499 (3)0.29559 (10)0.62838 (14)0.0292 (4)
N31.0445 (3)0.31883 (12)0.91929 (16)0.0314 (4)
H10.929 (3)0.3386 (15)0.948 (2)0.054 (8)*
H21.087 (4)0.2714 (8)0.944 (2)0.044 (7)*
C10.6890 (4)0.43079 (11)0.77159 (17)0.0238 (5)
C20.4645 (4)0.43995 (12)0.71925 (18)0.0283 (5)
H2A0.40600.40490.66290.034*
C30.3258 (4)0.50032 (13)0.74945 (19)0.0293 (5)
H30.17670.50630.71290.035*
C40.4114 (4)0.55085 (12)0.83380 (19)0.0271 (5)
C50.6307 (4)0.54242 (12)0.89124 (18)0.0282 (5)
H50.68460.57630.94990.034*
C60.7681 (4)0.48252 (12)0.85957 (18)0.0266 (5)
H60.91610.47640.89750.032*
C70.8443 (4)0.37063 (11)0.73603 (18)0.0239 (4)
C80.9973 (3)0.32257 (12)0.80477 (18)0.0253 (5)
C90.8878 (4)0.35046 (12)0.62864 (18)0.0267 (5)
C100.7831 (4)0.38467 (14)0.5202 (2)0.0377 (6)
C111.2992 (4)0.22382 (14)0.7729 (2)0.0398 (6)
H11A1.40020.24560.83490.060*
H11B1.38310.21460.71190.060*
H11C1.23690.17460.79480.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0397 (3)0.0332 (3)0.0428 (4)0.0094 (2)0.0172 (3)0.0028 (2)
F10.0999 (14)0.0632 (11)0.0261 (8)0.0360 (9)0.0205 (8)0.0060 (7)
F20.0765 (11)0.0380 (8)0.0359 (9)0.0191 (7)0.0067 (7)0.0071 (6)
F30.0630 (11)0.0885 (13)0.0445 (10)−0.0080 (9)−0.0238 (9)−0.0024 (9)
N10.0322 (10)0.0243 (9)0.0245 (10)0.0041 (8)0.0025 (8)−0.0016 (7)
N20.0370 (11)0.0260 (9)0.0242 (10)−0.0007 (8)0.0037 (8)−0.0031 (7)
N30.0414 (12)0.0300 (11)0.0223 (10)0.0046 (9)0.0023 (9)0.0029 (8)
C10.0276 (11)0.0209 (10)0.0230 (11)−0.0014 (8)0.0040 (9)0.0029 (8)
C20.0305 (12)0.0269 (11)0.0273 (12)−0.0045 (9)0.0036 (9)−0.0009 (9)
C30.0244 (11)0.0300 (11)0.0334 (13)−0.0007 (9)0.0039 (9)0.0074 (9)
C40.0304 (12)0.0221 (10)0.0316 (12)0.0037 (9)0.0139 (10)0.0055 (9)
C50.0333 (12)0.0274 (11)0.0243 (11)−0.0033 (9)0.0057 (9)−0.0041 (9)
C60.0272 (11)0.0258 (11)0.0259 (12)−0.0005 (9)0.0007 (9)−0.0002 (9)
C70.0272 (11)0.0212 (10)0.0232 (11)−0.0017 (8)0.0030 (9)−0.0003 (8)
C80.0283 (11)0.0205 (10)0.0271 (12)−0.0035 (8)0.0034 (9)−0.0004 (9)
C90.0312 (11)0.0228 (10)0.0257 (12)−0.0028 (9)0.0026 (9)−0.0028 (9)
C100.0496 (15)0.0362 (13)0.0260 (13)0.0060 (11)0.0014 (11)−0.0025 (10)
C110.0408 (14)0.0353 (13)0.0425 (15)0.0127 (11)0.0038 (11)−0.0030 (11)

Geometric parameters (Å, °)

Cl1—C41.749 (2)C2—C31.388 (3)
F1—C101.344 (3)C2—H2A0.9300
F2—C101.333 (3)C3—C41.368 (3)
F3—C101.336 (3)C3—H30.9300
N1—C81.348 (3)C4—C51.382 (3)
N1—N21.357 (2)C5—C61.384 (3)
N1—C111.452 (3)C5—H50.9300
N2—C91.331 (3)C6—H60.9300
N3—C81.375 (3)C7—C81.394 (3)
N3—H10.88 (1)C7—C91.404 (3)
N3—H20.88 (1)C9—C101.483 (3)
C1—C21.389 (3)C11—H11A0.9600
C1—C61.402 (3)C11—H11B0.9600
C1—C71.473 (3)C11—H11C0.9600
C8—N1—N2112.53 (17)C5—C6—H6119.3
C8—N1—C11127.18 (19)C1—C6—H6119.3
N2—N1—C11120.18 (18)C8—C7—C9102.82 (18)
C9—N2—N1103.59 (17)C8—C7—C1126.98 (19)
C8—N3—H1109.5 (19)C9—C7—C1130.08 (19)
C8—N3—H2113.0 (17)N1—C8—N3122.16 (19)
H1—N3—H2114 (2)N1—C8—C7107.49 (19)
C2—C1—C6117.73 (19)N3—C8—C7130.2 (2)
C2—C1—C7122.32 (18)N2—C9—C7113.57 (19)
C6—C1—C7119.94 (19)N2—C9—C10118.3 (2)
C3—C2—C1121.3 (2)C7—C9—C10128.1 (2)
C3—C2—H2A119.3F2—C10—F3105.6 (2)
C1—C2—H2A119.3F2—C10—F1106.7 (2)
C4—C3—C2119.1 (2)F3—C10—F1105.95 (19)
C4—C3—H3120.5F2—C10—C9112.43 (19)
C2—C3—H3120.5F3—C10—C9113.2 (2)
C3—C4—C5121.79 (19)F1—C10—C9112.3 (2)
C3—C4—Cl1119.06 (17)N1—C11—H11A109.5
C5—C4—Cl1119.10 (17)N1—C11—H11B109.5
C4—C5—C6118.5 (2)H11A—C11—H11B109.5
C4—C5—H5120.7N1—C11—H11C109.5
C6—C5—H5120.7H11A—C11—H11C109.5
C5—C6—C1121.4 (2)H11B—C11—H11C109.5
C8—N1—N2—C9−0.4 (2)N2—N1—C8—C70.5 (2)
C11—N1—N2—C9−176.89 (19)C11—N1—C8—C7176.7 (2)
C6—C1—C2—C32.8 (3)C9—C7—C8—N1−0.3 (2)
C7—C1—C2—C3−175.81 (19)C1—C7—C8—N1−176.80 (19)
C1—C2—C3—C4−1.1 (3)C9—C7—C8—N3175.8 (2)
C2—C3—C4—C5−1.3 (3)C1—C7—C8—N3−0.6 (4)
C2—C3—C4—Cl1176.15 (16)N1—N2—C9—C70.2 (2)
C3—C4—C5—C62.0 (3)N1—N2—C9—C10177.86 (18)
Cl1—C4—C5—C6−175.48 (16)C8—C7—C9—N20.1 (2)
C4—C5—C6—C1−0.2 (3)C1—C7—C9—N2176.4 (2)
C2—C1—C6—C5−2.1 (3)C8—C7—C9—C10−177.3 (2)
C7—C1—C6—C5176.54 (19)C1—C7—C9—C10−1.0 (4)
C2—C1—C7—C8−138.4 (2)N2—C9—C10—F2−134.0 (2)
C6—C1—C7—C843.0 (3)C7—C9—C10—F243.3 (3)
C2—C1—C7—C946.1 (3)N2—C9—C10—F3106.4 (2)
C6—C1—C7—C9−132.4 (2)C7—C9—C10—F3−76.3 (3)
N2—N1—C8—N3−176.08 (18)N2—C9—C10—F1−13.6 (3)
C11—N1—C8—N30.1 (3)C7—C9—C10—F1163.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1···Cl1i0.88 (1)2.65 (2)3.413 (2)146 (2)
N3—H2···N2ii0.88 (1)2.54 (2)3.180 (3)130 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2700).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–211.
  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coispeau, G. (1977). Ger. Patent DE 76-2643640.
  • Nishiwaki, T., Arakawa, H. & Kikukawa, H. (1995). J. Chem. Res. (S), pp. 198–199.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography