PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2279.
Published online 2010 August 11. doi:  10.1107/S1600536810031363
PMCID: PMC3007938

2-(2-Meth­oxy-5-methyl­phen­yl)-2H-benzotriazole

Abstract

In the title mol­ecule, C14H13N3O, the dihedral angle between the mean planes of the benzotriazole ring system and the benzene ring is 57.8 (2)°.

Related literature

For related structures, see: Li et al. (2009 [triangle], 2010 [triangle]); Liu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2279-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O
  • M r = 239.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2279-efi1.jpg
  • a = 7.1604 (2) Å
  • b = 8.2560 (2) Å
  • c = 11.0342 (3) Å
  • β = 103.450 (1)°
  • V = 634.41 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.48 × 0.32 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.962, T max = 0.986
  • 6057 measured reflections
  • 1674 independent reflections
  • 1401 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.136
  • S = 1.05
  • 1674 reflections
  • 164 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031363/lh5100sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031363/lh5100Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC99–2113-M-033–007-MY2) and in part from the CYCU Distinctive Research Area project in the Chung Yuan Christian University, Taiwan (CYCU–98–CR–CH).

supplementary crystallographic information

Comment

In terms of coordination chemistry, the benzotriazole-phenolate (BTP) group can provide the N, O-bidentate chelation to stabilize transition metal or main group metal complexes. Therefore, our group is focused on the design and synthesis of the functionalized benzotriazole-phenolate ligand derived from 4-methyl-2-(2H-benzotriazol-2-yl)phenol (MeBTP-H). For instance, our group has successfully synthesized and structural characterized the amino-phenolate ligand via a Mannich condensation derived from MeBTP-H (Li et al., 2009). Most recently, we also reported the synthesis and crystal structure of the salicylaldehyde group substituted benzotriazole derivative (Li et al., 2010). In order to develop more useful ligands originated from BTP derivatives, we report herein the synthesis and crystal structure of the title compound, (I), a potential ligand for the preparation of orthometallated IrIII or PdII complexes.

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the mean planes of the benzotriazole unit and the benzene ring of the 2-methoxy-5-methylphenyl group is 57.8 (2)°, which is larger than that found in the crystal structure of 2-(2H-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate (Liu et al., 2009).

Experimental

The title compound (I) was synthesized by the procedure shown in Fig. 2. A mixture of 4-methyl-2-(2H-benzotriazol-2-yl)phenol (2.48 g, 10.0 mmol) and potassium carbonate (1.40 g, 10.0 mmol) in THF (30 ml) was stirred at room temperature for 0.5 h. Dimethyl sulfate (1.90 g, 15.0 mmol) was then added and the resulting mixture was refluxed for another 24 h. The mixture was filtered and the filtrate was dried in vacuo giving white powder. The white powder was redissolved in hexane and cooled to 253 K to give white crystalline solids. Colourless crystals were obtained from the saturated Et2O solution overnight. 1H NMR (CDCl3, p.p.m.): δ 7.01–7.97 (7H, m, PhH), 3.84 (3H, s, OCH3), 2.36 (3H, s, CH3).

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96 Å with Uiso(H) = 1.5 Ueq(C) for the CH3 groups.

Figures

Fig. 1.
The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The synthetic procedure of I.

Crystal data

C14H13N3OF(000) = 252
Mr = 239.27Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3727 reflections
a = 7.1604 (2) Åθ = 2.9–28.2°
b = 8.2560 (2) ŵ = 0.08 mm1
c = 11.0342 (3) ÅT = 296 K
β = 103.450 (1)°Columnar, colourless
V = 634.41 (3) Å30.48 × 0.32 × 0.17 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer1674 independent reflections
Radiation source: fine-focus sealed tube1401 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.9°
[var phi] and ω scansh = −8→9
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −11→11
Tmin = 0.962, Tmax = 0.986l = −14→14
6057 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136w = 1/[σ2(Fo2) + (0.0703P)2 + 0.098P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1674 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = −0.15 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O0.4845 (3)0.6862 (5)0.1130 (2)0.1062 (12)
N10.3698 (3)0.9600 (4)0.2453 (2)0.0707 (7)
N20.2199 (3)0.8702 (3)0.19219 (18)0.0547 (5)
N30.0939 (3)0.8349 (3)0.25880 (19)0.0610 (6)
C10.3261 (4)0.7274 (4)0.0259 (2)0.0661 (8)
C20.1880 (4)0.8191 (4)0.0643 (2)0.0551 (6)
C30.0210 (4)0.8665 (4)−0.0174 (2)0.0563 (6)
H3B−0.06890.92790.01130.068*
C4−0.0144 (4)0.8234 (4)−0.1425 (2)0.0602 (7)
C50.1215 (5)0.7297 (4)−0.1801 (2)0.0668 (8)
H5A0.09950.6976−0.26300.080*
C60.2882 (5)0.6826 (5)−0.0987 (3)0.0720 (8)
H6A0.37680.6198−0.12740.086*
C70.3395 (4)0.9863 (4)0.3605 (2)0.0638 (7)
C80.4473 (6)1.0761 (6)0.4615 (3)0.0895 (11)
H8A0.56131.12740.45740.107*
C90.3761 (6)1.0840 (5)0.5651 (3)0.0949 (13)
H9A0.44391.14190.63360.114*
C100.2044 (8)1.0082 (6)0.5726 (3)0.1011 (13)
H10A0.16201.01800.64580.121*
C110.0972 (7)0.9208 (6)0.4769 (3)0.0900 (11)
H11A−0.01720.87150.48250.108*
C120.1694 (4)0.9090 (4)0.3677 (2)0.0609 (7)
C13−0.1948 (5)0.8824 (5)−0.2321 (3)0.0846 (10)
H13A−0.27010.9448−0.18750.127*
H13B−0.26830.7911−0.27070.127*
H13C−0.16050.9487−0.29510.127*
C140.6487 (5)0.6546 (7)0.0835 (4)0.0985 (14)
H14A0.74390.62770.15750.148*
H14B0.68960.74810.04480.148*
H14C0.63210.56490.02660.148*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O0.0727 (13)0.190 (4)0.0590 (11)0.0505 (19)0.0224 (10)0.0159 (18)
N10.0598 (13)0.096 (2)0.0548 (12)−0.0144 (13)0.0095 (10)−0.0005 (13)
N20.0544 (11)0.0688 (14)0.0417 (9)−0.0028 (10)0.0126 (8)0.0001 (9)
N30.0703 (13)0.0706 (14)0.0464 (10)−0.0090 (12)0.0222 (9)−0.0029 (10)
C10.0627 (15)0.089 (2)0.0502 (13)0.0096 (16)0.0203 (11)0.0099 (14)
C20.0568 (13)0.0702 (16)0.0403 (10)−0.0049 (12)0.0154 (9)−0.0003 (11)
C30.0576 (13)0.0615 (15)0.0495 (12)−0.0047 (12)0.0122 (10)−0.0021 (11)
C40.0687 (15)0.0617 (15)0.0475 (11)−0.0131 (13)0.0080 (10)0.0025 (12)
C50.089 (2)0.0702 (17)0.0435 (12)−0.0138 (16)0.0213 (12)−0.0059 (12)
C60.085 (2)0.084 (2)0.0560 (14)0.0083 (17)0.0333 (14)−0.0004 (15)
C70.0725 (16)0.0697 (17)0.0443 (12)−0.0040 (14)0.0037 (11)0.0046 (12)
C80.094 (2)0.103 (3)0.0595 (17)−0.018 (2)−0.0068 (15)−0.0009 (19)
C90.134 (3)0.094 (3)0.0441 (14)−0.012 (3)−0.0043 (17)−0.0044 (16)
C100.166 (4)0.094 (3)0.0461 (15)−0.013 (3)0.0296 (19)−0.0035 (16)
C110.129 (3)0.094 (2)0.0549 (16)−0.021 (2)0.0374 (18)−0.0089 (17)
C120.0783 (17)0.0611 (15)0.0427 (11)−0.0037 (13)0.0132 (11)0.0039 (11)
C130.090 (2)0.095 (3)0.0565 (15)−0.009 (2)−0.0091 (14)−0.0017 (17)
C140.0672 (19)0.143 (4)0.091 (2)0.017 (2)0.0301 (17)0.015 (3)

Geometric parameters (Å, °)

O—C141.317 (4)C7—C121.393 (4)
O—C11.348 (3)C7—C81.410 (4)
N1—N21.324 (3)C8—C91.357 (5)
N1—C71.355 (4)C8—H8A0.9300
N2—N31.322 (3)C9—C101.399 (6)
N2—C21.439 (3)C9—H9A0.9300
N3—C121.345 (3)C10—C111.360 (6)
C1—C21.387 (4)C10—H10A0.9300
C1—C61.389 (4)C11—C121.421 (4)
C2—C31.377 (4)C11—H11A0.9300
C3—C41.391 (4)C13—H13A0.9600
C3—H3B0.9300C13—H13B0.9600
C4—C51.380 (4)C13—H13C0.9600
C4—C131.513 (4)C14—H14A0.9600
C5—C61.372 (4)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
C6—H6A0.9300
C14—O—C1121.7 (2)C9—C8—C7116.6 (4)
N2—N1—C7102.4 (2)C9—C8—H8A121.7
N3—N2—N1117.7 (2)C7—C8—H8A121.7
N3—N2—C2120.5 (2)C8—C9—C10122.5 (3)
N1—N2—C2121.7 (2)C8—C9—H9A118.8
N2—N3—C12102.2 (2)C10—C9—H9A118.8
O—C1—C2117.5 (2)C11—C10—C9122.4 (4)
O—C1—C6125.2 (3)C11—C10—H10A118.8
C2—C1—C6117.3 (3)C9—C10—H10A118.8
C3—C2—C1121.9 (2)C10—C11—C12116.4 (4)
C3—C2—N2118.3 (2)C10—C11—H11A121.8
C1—C2—N2119.8 (2)C12—C11—H11A121.8
C2—C3—C4120.5 (3)N3—C12—C7109.4 (2)
C2—C3—H3B119.8N3—C12—C11129.7 (3)
C4—C3—H3B119.8C7—C12—C11120.8 (3)
C5—C4—C3117.6 (3)C4—C13—H13A109.5
C5—C4—C13122.6 (3)C4—C13—H13B109.5
C3—C4—C13119.8 (3)H13A—C13—H13B109.5
C6—C5—C4121.9 (2)C4—C13—H13C109.5
C6—C5—H5A119.0H13A—C13—H13C109.5
C4—C5—H5A119.0H13B—C13—H13C109.5
C5—C6—C1120.8 (3)O—C14—H14A109.5
C5—C6—H6A119.6O—C14—H14B109.5
C1—C6—H6A119.6H14A—C14—H14B109.5
N1—C7—C12108.2 (2)O—C14—H14C109.5
N1—C7—C8130.4 (3)H14A—C14—H14C109.5
C12—C7—C8121.4 (3)H14B—C14—H14C109.5
C7—N1—N2—N30.3 (3)C13—C4—C5—C6177.3 (3)
C7—N1—N2—C2177.1 (3)C4—C5—C6—C10.3 (5)
N1—N2—N3—C12−0.2 (3)O—C1—C6—C5179.4 (3)
C2—N2—N3—C12−177.0 (2)C2—C1—C6—C50.9 (5)
C14—O—C1—C2−154.6 (4)N2—N1—C7—C12−0.3 (3)
C14—O—C1—C626.9 (7)N2—N1—C7—C8−178.9 (4)
O—C1—C2—C3−179.7 (3)N1—C7—C8—C9178.0 (4)
C6—C1—C2—C3−1.0 (5)C12—C7—C8—C9−0.4 (5)
O—C1—C2—N21.8 (4)C7—C8—C9—C10−0.3 (6)
C6—C1—C2—N2−179.5 (3)C8—C9—C10—C110.3 (7)
N3—N2—C2—C356.9 (4)C9—C10—C11—C120.4 (7)
N1—N2—C2—C3−119.8 (3)N2—N3—C12—C70.0 (3)
N3—N2—C2—C1−124.6 (3)N2—N3—C12—C11177.5 (4)
N1—N2—C2—C158.8 (4)N1—C7—C12—N30.2 (4)
C1—C2—C3—C4−0.1 (4)C8—C7—C12—N3178.9 (3)
N2—C2—C3—C4178.5 (3)N1—C7—C12—C11−177.6 (3)
C2—C3—C4—C51.2 (4)C8—C7—C12—C111.1 (5)
C2—C3—C4—C13−177.5 (3)C10—C11—C12—N3−178.4 (4)
C3—C4—C5—C6−1.3 (5)C10—C11—C12—C7−1.1 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5100).

References

  • Bruker (2008). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2475. [PMC free article] [PubMed]
  • Li, C.-Y., Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2010). Acta Cryst. E66, o726. [PMC free article] [PubMed]
  • Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2058. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography