PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2277.
Published online 2010 August 11. doi:  10.1107/S160053681003134X
PMCID: PMC3007935

5-Chloro-3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-7-methyl-1-benzofuran

Abstract

In the title compound, C17H14ClIO2S, the 4-iodo­phenyl ring makes a dihedral angle of 1.61 (9)° with the benzofuran ring system. In the crystal, mol­ecules are linked through a weak inter­molecular C—H(...)O hydrogen bond and an I(...)O contact [3.416 (2) Å]. The ethyl group is disordered over two orientations with site-occupancy factors of 0.402 (7) and 0.598 (7).

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For the structures of related 3-ethyl­sulfinyl-2-(4-iodo­phen­yl)-1-benzofuran derivatives, see: Choi et al. (2010a [triangle],b [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2277-scheme1.jpg

Experimental

Crystal data

  • C17H14ClIO2S
  • M r = 444.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2277-efi1.jpg
  • a = 7.8013 (2) Å
  • b = 10.4240 (3) Å
  • c = 11.6003 (3) Å
  • α = 115.962 (1)°
  • β = 98.040 (1)°
  • γ = 96.661 (1)°
  • V = 823.00 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.24 mm−1
  • T = 173 K
  • 0.48 × 0.34 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.473, T max = 0.746
  • 14721 measured reflections
  • 3773 independent reflections
  • 3408 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.065
  • S = 1.06
  • 3773 reflections
  • 221 parameters
  • 28 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003134X/is2588sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003134X/is2588Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Many compounds containing a benzofuran ring have received considerable attention in view of their pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-2-(4-iodophenyl)-1-benzofuran analogues (Choi et al., 2010a, b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The ethyl group is disordered over two positions with site–occupancy factors of 0.402 (7) (for atom labelled A) and 0.598 (7) (for atom labelled B) in Fig. 1. The dihedral angle formed by the benzofuran plane and the 4–iodophenyl ring is 1.61 (9)°. The molecular packing (Fig. 2) is stabilized by a weak intermolecular C—H···O hydrogen bond between the methylene H atom of the ethyl group and the oxygen of the S═O unit, with a C16A—H16B···O2i (Table 1). The crystal packing (Fig. 2) is further stabilized by an I···O halogen-bonding between the iodine and the oxygen of the S═O unit [I···O2ii = 3.416 (2) Å; C12—I···O2ii = 161.46 (7)°] (Politzer et al., 2007).

Experimental

77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 5-chloro-3-ethylsulfanyl-2-(4-iodophenyl)-7-methyl-1-benzofuran (300 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 457–458 K; R/f = 0.64 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms, and with Uiso(H) =1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The ethyl group was found to be disordered over two positions and modelled with site-occupancy factors, from refinement of 0.402 (7) (part A) and 0.598 (7) (part B), respectively. The displacement ellipsoids of part B were restrained using command ISOR (0.01), sets of C atoms were restrained using command DELU and the distances of C—C were restrained to 1.480 (2) Å using command DFIX. The distances of C—S and C—C were restrained to 0.001Å using command SADI.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. The ethyl group is disordered over two positions ...
Fig. 2.
C—H···O and I···O interactions (dotted lines) in the crystal structure of the title compound. The disordered component of the ethyl group, part B, has been omitted for clarity as have H atoms not ...

Crystal data

C17H14ClIO2SZ = 2
Mr = 444.69F(000) = 436
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8013 (2) ÅCell parameters from 9231 reflections
b = 10.4240 (3) Åθ = 2.2–27.5°
c = 11.6003 (3) ŵ = 2.24 mm1
α = 115.962 (1)°T = 173 K
β = 98.040 (1)°Block, colourless
γ = 96.661 (1)°0.48 × 0.34 × 0.16 mm
V = 823.00 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer3773 independent reflections
Radiation source: rotating anode3408 reflections with I > 2σ(I)
graphite multilayerRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
[var phi] and ω scansh = −9→10
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −13→13
Tmin = 0.473, Tmax = 0.746l = −15→15
14721 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.065H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.034P)2 + 0.2748P] where P = (Fo2 + 2Fc2)/3
3773 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.28 e Å3
28 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I0.64468 (2)0.843070 (18)0.633828 (13)0.05745 (7)
Cl−0.13606 (8)0.12905 (7)−0.54903 (5)0.06029 (16)
S0.05956 (8)0.20738 (7)0.00343 (6)0.05340 (14)
O10.26320 (19)0.55334 (15)−0.03279 (13)0.0397 (3)
O2−0.1151 (3)0.1273 (2)−0.0800 (2)0.0830 (7)
C3−0.0084 (3)0.2242 (2)−0.2921 (2)0.0432 (4)
H3−0.06630.1352−0.30310.052*
C10.1344 (3)0.3441 (2)−0.04020 (19)0.0398 (4)
C20.0905 (3)0.3316 (2)−0.17052 (19)0.0383 (4)
C4−0.0153 (3)0.2577 (2)−0.3946 (2)0.0440 (4)
C50.0668 (3)0.3905 (2)−0.3815 (2)0.0450 (5)
H50.05670.4065−0.45470.054*
C60.1637 (3)0.4998 (2)−0.2612 (2)0.0413 (4)
C70.1723 (3)0.4632 (2)−0.15913 (18)0.0377 (4)
C80.2378 (3)0.4790 (2)0.03875 (18)0.0384 (4)
C90.3273 (3)0.5601 (2)0.17695 (19)0.0396 (4)
C100.3167 (3)0.5045 (3)0.2654 (2)0.0498 (5)
H100.25030.41200.23700.060*
C110.4045 (3)0.5857 (3)0.3958 (2)0.0512 (5)
H110.39430.54810.45450.061*
C120.5061 (3)0.7208 (2)0.4386 (2)0.0446 (5)
C130.5151 (4)0.7794 (3)0.3532 (2)0.0611 (7)
H130.58150.87210.38250.073*
C140.4253 (4)0.7001 (3)0.2240 (2)0.0590 (6)
H140.43030.74100.16730.071*
C150.2513 (4)0.6454 (3)−0.2418 (3)0.0580 (6)
H15A0.37450.6468−0.24210.087*
H15B0.23850.7197−0.15930.087*
H15C0.19710.6631−0.31160.087*
C16A0.2618 (6)0.1332 (6)0.0089 (5)0.0561 (19)0.402 (7)
H16A0.36490.21080.05700.067*0.402 (7)
H16B0.25430.06970.04980.067*0.402 (7)
C17A0.2695 (15)0.0509 (8)−0.1310 (5)0.074 (2)0.402 (7)
H17A0.1592−0.0159−0.17890.112*0.402 (7)
H17B0.3633−0.0024−0.13820.112*0.402 (7)
H17C0.29090.1174−0.16650.112*0.402 (7)
C16B0.1842 (6)0.0735 (5)−0.0927 (4)0.0586 (13)0.598 (7)
H16C0.1382−0.0208−0.09980.070*0.598 (7)
H16D0.16860.0643−0.18060.070*0.598 (7)
C17B0.3749 (6)0.1176 (7)−0.0305 (6)0.0832 (18)0.598 (7)
H17D0.41740.2156−0.01400.125*0.598 (7)
H17E0.43860.0533−0.08820.125*0.598 (7)
H17F0.39200.11260.05080.125*0.598 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.05606 (11)0.06525 (12)0.03984 (9)−0.00242 (7)−0.00008 (6)0.02082 (7)
Cl0.0624 (3)0.0565 (3)0.0396 (3)0.0026 (3)0.0005 (2)0.0076 (2)
S0.0596 (3)0.0483 (3)0.0604 (3)0.0012 (3)0.0147 (3)0.0339 (3)
O10.0480 (7)0.0332 (7)0.0359 (7)0.0025 (6)0.0051 (5)0.0165 (5)
O20.0949 (15)0.0656 (12)0.0693 (12)−0.0320 (11)−0.0043 (11)0.0322 (10)
C30.0463 (10)0.0333 (10)0.0431 (10)0.0038 (8)0.0085 (8)0.0130 (8)
C10.0467 (10)0.0359 (10)0.0403 (10)0.0077 (8)0.0110 (8)0.0202 (8)
C20.0414 (10)0.0341 (9)0.0392 (9)0.0078 (8)0.0097 (8)0.0163 (8)
C40.0418 (10)0.0425 (11)0.0356 (9)0.0073 (8)0.0036 (8)0.0090 (8)
C50.0496 (11)0.0497 (12)0.0378 (10)0.0118 (9)0.0089 (8)0.0218 (9)
C60.0459 (10)0.0390 (10)0.0428 (10)0.0083 (8)0.0113 (8)0.0217 (8)
C70.0404 (9)0.0343 (9)0.0358 (9)0.0059 (7)0.0067 (7)0.0146 (7)
C80.0446 (10)0.0359 (10)0.0387 (9)0.0088 (8)0.0107 (8)0.0199 (8)
C90.0414 (10)0.0376 (10)0.0379 (9)0.0068 (8)0.0071 (7)0.0163 (8)
C100.0586 (13)0.0419 (11)0.0452 (11)−0.0001 (10)0.0009 (9)0.0222 (9)
C110.0588 (13)0.0525 (13)0.0437 (11)0.0043 (10)0.0028 (9)0.0273 (10)
C120.0428 (10)0.0503 (12)0.0363 (9)0.0061 (9)0.0046 (8)0.0179 (9)
C130.0743 (16)0.0502 (13)0.0463 (12)−0.0156 (12)−0.0007 (11)0.0216 (10)
C140.0800 (16)0.0503 (13)0.0409 (11)−0.0101 (12)0.0022 (11)0.0246 (10)
C150.0709 (15)0.0502 (13)0.0551 (13)−0.0005 (11)0.0093 (11)0.0306 (11)
C16A0.076 (4)0.041 (3)0.050 (3)0.005 (3)0.002 (3)0.025 (3)
C17A0.112 (6)0.057 (4)0.062 (4)0.028 (4)0.015 (4)0.033 (3)
C16B0.084 (3)0.044 (2)0.051 (3)0.017 (2)0.019 (2)0.0216 (19)
C17B0.081 (4)0.094 (4)0.099 (4)0.037 (3)0.035 (3)0.057 (3)

Geometric parameters (Å, °)

I—C122.095 (2)C10—C111.389 (3)
I—O2i3.416 (2)C10—H100.9300
Cl—C41.739 (2)C11—C121.370 (3)
S—O21.466 (2)C11—H110.9300
S—C11.774 (2)C12—C131.378 (3)
S—C16A1.841 (4)C13—C141.381 (3)
S—C16B1.842 (4)C13—H130.9300
O1—C71.372 (2)C14—H140.9300
O1—C81.379 (2)C15—H15A0.9600
C3—C41.374 (3)C15—H15B0.9600
C3—C21.397 (3)C15—H15C0.9600
C3—H30.9300C16A—C17A1.4807 (15)
C1—C81.368 (3)C16A—H16A0.9700
C1—C21.447 (3)C16A—H16B0.9700
C2—C71.386 (3)C17A—H17A0.9600
C4—C51.390 (3)C17A—H17B0.9600
C5—C61.389 (3)C17A—H17C0.9600
C5—H50.9300C16B—C17B1.4812 (15)
C6—C71.391 (3)C16B—H16C0.9700
C6—C151.495 (3)C16B—H16D0.9700
C8—C91.461 (3)C17B—H17D0.9600
C9—C101.389 (3)C17B—H17E0.9600
C9—C141.392 (3)C17B—H17F0.9600
C12—I—O2i161.46 (7)C12—C11—C10120.4 (2)
O2—S—C1108.18 (11)C12—C11—H11119.8
O2—S—C16A126.7 (2)C10—C11—H11119.8
C1—S—C16A99.2 (2)C11—C12—C13119.9 (2)
O2—S—C16B96.09 (17)C11—C12—I121.10 (16)
C1—S—C16B96.62 (17)C13—C12—I119.02 (16)
C7—O1—C8106.81 (15)C12—C13—C14119.8 (2)
C4—C3—C2116.20 (19)C12—C13—H13120.1
C4—C3—H3121.9C14—C13—H13120.1
C2—C3—H3121.9C13—C14—C9121.3 (2)
C8—C1—C2106.99 (17)C13—C14—H14119.3
C8—C1—S128.36 (16)C9—C14—H14119.3
C2—C1—S124.63 (15)C6—C15—H15A109.5
C7—C2—C3119.59 (18)C6—C15—H15B109.5
C7—C2—C1105.15 (16)H15A—C15—H15B109.5
C3—C2—C1135.26 (19)C6—C15—H15C109.5
C3—C4—C5123.51 (19)H15A—C15—H15C109.5
C3—C4—Cl118.70 (17)H15B—C15—H15C109.5
C5—C4—Cl117.78 (17)C17A—C16A—S103.8 (4)
C6—C5—C4121.43 (19)C17A—C16A—H16A111.0
C6—C5—H5119.3S—C16A—H16A111.0
C4—C5—H5119.3C17A—C16A—H16B111.0
C5—C6—C7114.33 (19)S—C16A—H16B111.0
C5—C6—C15123.3 (2)H16A—C16A—H16B109.0
C7—C6—C15122.3 (2)C17B—C16B—S111.2 (3)
O1—C7—C2110.77 (17)C17B—C16B—H16C109.4
O1—C7—C6124.31 (18)S—C16B—H16C109.4
C2—C7—C6124.93 (18)C17B—C16B—H16D109.4
C1—C8—O1110.28 (16)S—C16B—H16D109.4
C1—C8—C9135.71 (19)H16C—C16B—H16D108.0
O1—C8—C9114.00 (16)C16B—C17B—H17D109.5
C10—C9—C14117.86 (19)C16B—C17B—H17E109.5
C10—C9—C8122.76 (19)H17D—C17B—H17E109.5
C14—C9—C8119.37 (19)C16B—C17B—H17F109.5
C9—C10—C11120.6 (2)H17D—C17B—H17F109.5
C9—C10—H10119.7H17E—C17B—H17F109.5
C11—C10—H10119.7
O2—S—C1—C8147.2 (2)C2—C1—C8—O1−0.2 (2)
C16A—S—C1—C8−79.1 (3)S—C1—C8—O1−178.82 (15)
C16B—S—C1—C8−114.1 (2)C2—C1—C8—C9−179.1 (2)
O2—S—C1—C2−31.1 (2)S—C1—C8—C92.3 (4)
C16A—S—C1—C2102.6 (2)C7—O1—C8—C10.6 (2)
C16B—S—C1—C267.5 (2)C7—O1—C8—C9179.74 (16)
C4—C3—C2—C70.8 (3)C1—C8—C9—C10−1.6 (4)
C4—C3—C2—C1−179.5 (2)O1—C8—C9—C10179.5 (2)
C8—C1—C2—C7−0.2 (2)C1—C8—C9—C14179.6 (3)
S—C1—C2—C7178.46 (15)O1—C8—C9—C140.7 (3)
C8—C1—C2—C3−179.9 (2)C14—C9—C10—C11−1.3 (4)
S—C1—C2—C3−1.2 (4)C8—C9—C10—C11179.9 (2)
C2—C3—C4—C5−1.2 (3)C9—C10—C11—C12−1.4 (4)
C2—C3—C4—Cl180.00 (15)C10—C11—C12—C132.9 (4)
C3—C4—C5—C60.3 (3)C10—C11—C12—I−178.48 (19)
Cl—C4—C5—C6179.08 (17)O2i—I—C12—C11−167.99 (19)
C4—C5—C6—C71.0 (3)O2i—I—C12—C1310.6 (4)
C4—C5—C6—C15−178.8 (2)C11—C12—C13—C14−1.6 (4)
C8—O1—C7—C2−0.7 (2)I—C12—C13—C14179.7 (2)
C8—O1—C7—C6179.17 (19)C12—C13—C14—C9−1.1 (4)
C3—C2—C7—O1−179.68 (18)C10—C9—C14—C132.5 (4)
C1—C2—C7—O10.6 (2)C8—C9—C14—C13−178.6 (3)
C3—C2—C7—C60.4 (3)O2—S—C16A—C17A48.1 (6)
C1—C2—C7—C6−179.3 (2)C1—S—C16A—C17A−72.9 (5)
C5—C6—C7—O1178.80 (18)C16B—S—C16A—C17A15.4 (5)
C15—C6—C7—O1−1.5 (3)O2—S—C16B—C17B−177.3 (4)
C5—C6—C7—C2−1.3 (3)C1—S—C16B—C17B73.5 (4)
C15—C6—C7—C2178.4 (2)C16A—S—C16B—C17B−23.2 (4)

Symmetry codes: (i) x+1, y+1, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16A—H16B···O2ii0.972.403.297 (6)154.

Symmetry codes: (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2588).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1862. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1985. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [PubMed]
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography