PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1142.
Published online 2010 August 21. doi:  10.1107/S160053681003309X
PMCID: PMC3007929

Bis(acridine-κN)dibromidoplatinum(II)

Abstract

In the title complex, [PtBr2(C13H9N)2], the PtII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms from two acridine ligands and two Br atoms. The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PtN2Br2 unit is exactly planar. The dihedral angle between the PtN2Br2 unit and acridine ligand is 78.98 (9)°. In the crystal structure, the complex mol­ecules are arranged in two distinct chains along [110] and [An external file that holds a picture, illustration, etc.
Object name is e-66-m1142-efi1.jpg10]. In the chains, inter­molecular π–π inter­actions between the pyridyl and benzene rings connect the complex mol­ecules, with a centroid–centroid distance of 3.631 (4) Å.

Related literature

For the crystal structure of [PtCl2(acridine)2], see: Ha (2010 [triangle]). For the formation of polymorphs of acridine using dicarb­oxy­lic acids, see: Mei & Wolf (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1142-scheme1.jpg

Experimental

Crystal data

  • [PtBr2(C13H9N)2]
  • M r = 713.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1142-efi2.jpg
  • a = 16.0256 (9) Å
  • b = 8.6845 (5) Å
  • c = 17.0646 (10) Å
  • β = 115.017 (1)°
  • V = 2152.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 10.25 mm−1
  • T = 200 K
  • 0.35 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.601, T max = 1.000
  • 6467 measured reflections
  • 2091 independent reflections
  • 1672 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.070
  • S = 1.00
  • 2091 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 2.19 e Å−3
  • Δρmin = −0.92 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003309X/hy2340sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003309X/hy2340Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

supplementary crystallographic information

Comment

The title complex, [PtBr2(acr)2] (acr = acridine), is isomorphous with the chlorido analogue [PtCl2(acr)2] (Ha, 2010). In the complex, the PtII ion is four-coordinated in an essentially square-planar environment by two N atoms from two acridine ligands and two Br atoms (Table 1 and Fig. 1). The Pt atom is located on an inversion centre, and thus the asymmetric unit contains one half of the complex and the PtN2Br2 unit is exactly planar. The nearly planar acridine ligands, with a maximum deviation of 0.072 (6) Å (C11) from the least-squares plane, are parallel. The dihedral angle between the PtN2Br2 unit and acridine ligand is 78.98 (9)°. The Br atoms are in a trans arrangement and almost perpendicular to the acridine planes, with the bond angle N1—Pt1—Br1 = 88.65 (14)°. In the crystal structure, the complex molecules are arranged in two distinct chains along [1 1 0] and [1 1 0] (Fig. 2). In the chains, intermolecular π–π interactions between the pyridyl and benzene rings connect the complex molecules, with a centroid–centroid distance of 3.631 (4) Å, and the dihedral angle between the ring planes is 1.2 (3)°. The packing pattern is considerably similar to that of the most stable polymorph of acridine (Mei & Wolf, 2004).

Experimental

To a solution of K2PtBr4 (0.203 g, 0.342 mmol) in H2O (30 ml) was added acridine (0.131 g, 0.730 mmol) and the mixture was refluxed for 3 h. The precipitate was then separated by filtration, washed with H2O and EtOH and dried under vacuum to give a yellow powder (0.186 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide solution at 323 K.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (2.19 e Å-3) and the deepest hole (-0.92 e Å-3) in the difference Fourier map are located 1.04 and 0.76 Å from the Pt1 atom, respectively.

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) 1-x, 1-y, 1-z.]
Fig. 2.
View of the unit-cell contents of the title complex. H atoms have been omitted for clarity.

Crystal data

[PtBr2(C13H9N)2]F(000) = 1344
Mr = 713.33Dx = 2.202 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3125 reflections
a = 16.0256 (9) Åθ = 2.7–26.0°
b = 8.6845 (5) ŵ = 10.25 mm1
c = 17.0646 (10) ÅT = 200 K
β = 115.017 (1)°Rod, yellow
V = 2152.1 (2) Å30.35 × 0.06 × 0.04 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer2091 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −19→19
Tmin = 0.601, Tmax = 1.000k = −10→10
6467 measured reflectionsl = −14→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3
2091 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 2.19 e Å3
0 restraintsΔρmin = −0.92 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.50000.50000.50000.02062 (12)
Br10.51478 (4)0.44407 (8)0.36640 (5)0.03216 (18)
N10.3748 (3)0.3887 (5)0.4493 (3)0.0218 (11)
C10.3686 (4)0.2391 (6)0.4712 (4)0.0215 (13)
C20.4437 (4)0.1654 (6)0.5371 (4)0.0267 (15)
H20.49970.22010.56660.032*
C30.4373 (4)0.0170 (6)0.5592 (5)0.0326 (16)
H30.4891−0.03050.60360.039*
C40.3550 (4)−0.0683 (7)0.5172 (4)0.0299 (15)
H40.3519−0.17250.53280.036*
C50.2809 (4)−0.0004 (6)0.4549 (5)0.0300 (15)
H50.2252−0.05690.42750.036*
C60.2850 (4)0.1547 (7)0.4295 (4)0.0256 (14)
C70.2099 (4)0.2251 (6)0.3653 (4)0.0243 (14)
H70.15460.16880.33580.029*
C80.2149 (4)0.3780 (7)0.3437 (4)0.0232 (14)
C90.1382 (4)0.4572 (7)0.2798 (5)0.0339 (17)
H90.08240.40310.24830.041*
C100.1441 (4)0.6080 (7)0.2638 (4)0.0334 (16)
H100.09210.65980.22200.040*
C110.2273 (4)0.6896 (7)0.3088 (5)0.0347 (16)
H110.23050.79560.29680.042*
C120.3023 (4)0.6182 (7)0.3687 (4)0.0283 (15)
H120.35740.67500.39840.034*
C130.2995 (4)0.4596 (6)0.3878 (4)0.0232 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.01485 (17)0.02395 (18)0.0197 (2)−0.00426 (13)0.00406 (14)−0.00171 (15)
Br10.0278 (3)0.0431 (4)0.0263 (4)−0.0104 (3)0.0121 (3)−0.0085 (3)
N10.017 (2)0.024 (3)0.023 (3)−0.0023 (19)0.007 (2)−0.004 (2)
C10.019 (3)0.026 (3)0.020 (4)0.001 (2)0.009 (3)−0.002 (3)
C20.022 (3)0.030 (3)0.024 (4)−0.005 (3)0.005 (3)−0.002 (3)
C30.029 (3)0.033 (4)0.033 (4)0.004 (3)0.011 (3)0.002 (3)
C40.034 (4)0.024 (3)0.034 (4)−0.003 (3)0.016 (3)0.000 (3)
C50.031 (3)0.030 (3)0.035 (4)−0.005 (3)0.020 (3)−0.003 (3)
C60.021 (3)0.030 (3)0.028 (4)−0.001 (3)0.012 (3)−0.004 (3)
C70.015 (3)0.032 (3)0.024 (4)−0.005 (2)0.005 (3)−0.004 (3)
C80.017 (3)0.031 (3)0.020 (4)0.002 (2)0.006 (3)−0.004 (3)
C90.022 (3)0.039 (4)0.032 (4)0.002 (3)0.003 (3)−0.002 (3)
C100.028 (4)0.044 (4)0.022 (4)0.004 (3)0.004 (3)0.005 (3)
C110.039 (4)0.033 (4)0.028 (4)0.000 (3)0.010 (3)0.003 (3)
C120.019 (3)0.033 (3)0.027 (4)−0.003 (3)0.003 (3)0.004 (3)
C130.016 (3)0.030 (4)0.020 (4)−0.005 (2)0.005 (3)−0.006 (3)

Geometric parameters (Å, °)

Pt1—N12.058 (4)C6—C71.380 (8)
Pt1—Br12.4385 (7)C7—C81.389 (8)
N1—C131.366 (7)C7—H70.9500
N1—C11.367 (7)C8—C91.428 (8)
C1—C21.406 (8)C8—C131.430 (7)
C1—C61.426 (7)C9—C101.349 (9)
C2—C31.359 (8)C9—H90.9500
C2—H20.9500C10—C111.415 (8)
C3—C41.415 (9)C10—H100.9500
C3—H30.9500C11—C121.355 (8)
C4—C51.349 (9)C11—H110.9500
C4—H40.9500C12—C131.420 (8)
C5—C61.425 (8)C12—H120.9500
C5—H50.9500
N1—Pt1—N1i180.00 (16)C7—C6—C5121.6 (5)
N1—Pt1—Br1i91.35 (14)C7—C6—C1119.2 (5)
N1i—Pt1—Br1i88.65 (14)C5—C6—C1119.2 (5)
N1—Pt1—Br188.65 (14)C6—C7—C8120.3 (5)
N1i—Pt1—Br191.35 (14)C6—C7—H7119.8
Br1i—Pt1—Br1180.0C8—C7—H7119.8
C13—N1—C1119.7 (5)C7—C8—C9122.4 (5)
C13—N1—Pt1119.9 (4)C7—C8—C13118.8 (5)
C1—N1—Pt1120.1 (4)C9—C8—C13118.8 (5)
N1—C1—C2120.9 (5)C10—C9—C8120.7 (6)
N1—C1—C6120.9 (5)C10—C9—H9119.7
C2—C1—C6118.1 (5)C8—C9—H9119.7
C3—C2—C1120.9 (6)C9—C10—C11120.4 (6)
C3—C2—H2119.5C9—C10—H10119.8
C1—C2—H2119.5C11—C10—H10119.8
C2—C3—C4121.3 (6)C12—C11—C10120.8 (6)
C2—C3—H3119.3C12—C11—H11119.6
C4—C3—H3119.3C10—C11—H11119.6
C5—C4—C3119.4 (6)C11—C12—C13120.9 (5)
C5—C4—H4120.3C11—C12—H12119.6
C3—C4—H4120.3C13—C12—H12119.6
C4—C5—C6121.0 (6)N1—C13—C12120.7 (5)
C4—C5—H5119.5N1—C13—C8120.9 (5)
C6—C5—H5119.5C12—C13—C8118.3 (5)
Br1i—Pt1—N1—C13104.3 (4)C5—C6—C7—C8178.0 (6)
Br1—Pt1—N1—C13−75.7 (4)C1—C6—C7—C8−2.1 (9)
Br1i—Pt1—N1—C1−81.7 (4)C6—C7—C8—C9−177.9 (6)
Br1—Pt1—N1—C198.3 (4)C6—C7—C8—C131.2 (9)
C13—N1—C1—C2−177.0 (6)C7—C8—C9—C10176.4 (6)
Pt1—N1—C1—C28.9 (8)C13—C8—C9—C10−2.7 (10)
C13—N1—C1—C61.2 (8)C8—C9—C10—C111.4 (10)
Pt1—N1—C1—C6−172.8 (4)C9—C10—C11—C12−0.1 (11)
N1—C1—C2—C3179.6 (6)C10—C11—C12—C130.2 (10)
C6—C1—C2—C31.3 (9)C1—N1—C13—C12175.2 (6)
C1—C2—C3—C4−0.4 (10)Pt1—N1—C13—C12−10.8 (8)
C2—C3—C4—C5−1.0 (10)C1—N1—C13—C8−2.1 (9)
C3—C4—C5—C61.3 (10)Pt1—N1—C13—C8171.9 (4)
C4—C5—C6—C7179.5 (6)C11—C12—C13—N1−178.9 (6)
C4—C5—C6—C1−0.4 (10)C11—C12—C13—C8−1.5 (9)
N1—C1—C6—C70.9 (9)C7—C8—C13—N11.0 (9)
C2—C1—C6—C7179.2 (6)C9—C8—C13—N1−179.9 (6)
N1—C1—C6—C5−179.2 (6)C7—C8—C13—C12−176.4 (6)
C2—C1—C6—C5−0.9 (9)C9—C8—C13—C122.7 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2340).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ha, K. (2010). Z. Kristallogr. New Cryst. Struct.225, 323–324.
  • Mei, X. & Wolf, C. (2004). Cryst. Growth Des.4, 1099–1103.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography