PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2196–o2197.
Published online 2010 August 4. doi:  10.1107/S1600536810030217
PMCID: PMC3007925

3,10-C-meso-3,5,7,7,10,12,14,14-Octa­methyl-4,11-diaza-1,8-diazo­niacyclo­tetra­decane bis­(perchlorate)

Abstract

The structure determination of the title salt, C18H42N4 2+·2ClO4 , reveals that protonation has occurred at diagonally opposite amine N atoms. Intra­molecular N—H(...)N hydrogen bonds stabilize the conformation of the dication. In the crystal, the dications are bridged by perchlorate ions via N—H(...)O hydrogen bonds into supra­molecular chains propagating along the c axis and weak C—H(...)O inter­actions cross-link the chains.

Related literature

For background to macrocycles and for related structures, see: Benson et al. (2006 [triangle]); Roy et al. (2006 [triangle], 2008 [triangle]); Hazari et al. (2008 [triangle]). For the synthesis, see: Curtis et al. (1969 [triangle]); Bembi et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2196-scheme1.jpg

Experimental

Crystal data

  • C18H42N4 2+·2ClO4
  • M r = 513.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2196-efi1.jpg
  • a = 8.868 (2) Å
  • b = 16.297 (3) Å
  • c = 17.754 (5) Å
  • β = 102.088 (5)°
  • V = 2508.9 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 98 K
  • 0.35 × 0.10 × 0.03 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.695, T max = 1
  • 54635 measured reflections
  • 4387 independent reflections
  • 4279 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.240
  • S = 1.19
  • 4387 reflections
  • 295 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030217/hb5587sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030217/hb5587Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Ministry of National Science, Information & Communication Technology (NSICT), Bangladesh, for the award of a research grant to TGR and a research fellowship to KKB.

supplementary crystallographic information

Comment

The title salt (I) was characterized during studies of macrocyclic ligands of this type as well as their transition metal complexes (Benson et al., 2006; Roy et al., 2006; Hazari et al., 2008; Roy et al., 2008). The asymmetric unit of (I) comprises one di-protonated macrocyclic ligand and two perchlorate anions, Fig. 1. The observed conformation and pattern of protonation (i.e. at the diagonally opposite N1 and N8 atoms) in the di-cation conforms to expectation (Hazari et al., 2008). The presence of N–H···N hydrogen bonds within the cavity is noted, Table 1. The remaining N–H groups form N–H···O hydrogen bonds to perchlorate-O atoms, Table 1. The perchlorate ions serve to bridge the cations to form a supramolecular chain along the c axis and connections between these, i.e. via C–H···O contacts, lead to the formation of a supramolecular layer in the ac plane. Layers stack along the b axis, Fig. 3.

Experimental

The compound 3,10-C-meso-3,5,7,7,10,12,14,14—octamethyl-4,11-diaza-1,8-diazoniacyclotetradecadiene (Curtis et al., 1969), on reduction with NaBH4, yields an isomeric mixture of saturated macrocycles, the Me8[14] anes, which have been resolved into three distinct isomers (Bembi et al., 1989). During synthesis of Fe(III) complex of one of the isomers, LC (Bembi et al., 1989), this isomeric ligand on heating with slightly acidic methanolic solution of Fe2(ClO4)3.6H2O in the ratio of 1:2, followed by cooling and slow evaporation at room temperature for a few days produced yellow-orange prisms of (I).

Refinement

All N– and C-bound H atoms were allowed to ride on their parent atoms at N–H and C–H distances of 0.88–0.92 Å and 0.92–1.00 Å, respectively, and with Uiso(H) values of 1.2–1.5Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular array in (I) showing N–H···O hydrogen bonds and C–H···O contacts as orange and blue dashed lines, respectively. Colour code: Cl (cyan), O (red), N (blue), C (grey) & ...
Fig. 3.
Stacking of layers along the b axis in (I). The C–H···O contacts are shown as blue dashed lines. Colour code: Cl (cyan), O (red), N (blue), C (grey) & H (green).

Crystal data

C18H42N42+·2ClO4F(000) = 1104
Mr = 513.46Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7813 reflections
a = 8.868 (2) Åθ = 2.4–30.4°
b = 16.297 (3) ŵ = 0.31 mm1
c = 17.754 (5) ÅT = 98 K
β = 102.088 (5)°Prism, yellow-orange
V = 2508.9 (10) Å30.35 × 0.10 × 0.03 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer4387 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
graphiteRint = 0.055
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.695, Tmax = 1k = −19→19
54635 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.128P)2 + 4.0207P] where P = (Fo2 + 2Fc2)/3
4387 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.85 e Å3
2 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.11642 (10)0.18918 (6)0.58280 (6)0.0337 (3)
Cl20.40297 (12)0.32683 (6)0.27709 (6)0.0372 (3)
O1−0.2173 (4)0.1783 (4)0.5090 (2)0.0900 (17)
O20.0398 (3)0.18064 (16)0.57180 (16)0.0351 (6)
O3−0.1414 (4)0.2682 (2)0.6113 (2)0.0641 (11)
O4−0.1502 (6)0.1294 (3)0.6341 (3)0.0955 (17)
O50.5140 (4)0.2692 (2)0.3177 (2)0.0593 (9)
O60.2511 (4)0.2976 (2)0.28141 (18)0.0506 (8)
O70.4141 (4)0.3316 (2)0.19821 (18)0.0551 (9)
O80.4289 (4)0.4058 (2)0.3127 (2)0.0608 (10)
N10.3158 (3)0.26608 (17)0.54123 (17)0.0251 (6)
H1N0.29390.22960.57700.030*
H2N0.23060.26830.50150.030*
N40.2753 (3)0.15534 (18)0.40857 (16)0.0253 (6)
H4N0.29730.19510.37910.030*
N8−0.0379 (4)0.18381 (18)0.38755 (18)0.0280 (7)
H8N−0.09260.18010.42610.034*
H9N0.06460.18830.41100.034*
N110.1144 (4)0.35008 (19)0.42023 (18)0.0292 (7)
H11N0.15600.34700.37950.035*
C20.4467 (4)0.2319 (2)0.5101 (2)0.0287 (8)
H2A0.53920.22810.55230.034*
H2B0.47080.26980.47070.034*
C30.4093 (4)0.1473 (2)0.4745 (2)0.0276 (8)
H30.50000.12840.45390.033*
C3A0.3788 (5)0.0843 (2)0.5324 (2)0.0347 (9)
H3A10.35460.03130.50660.052*
H3A20.29150.10220.55420.052*
H3A30.47060.07860.57380.052*
C50.2380 (4)0.0798 (2)0.3613 (2)0.0284 (8)
H50.22720.03340.39660.034*
C5A0.3644 (4)0.0571 (3)0.3177 (2)0.0352 (9)
H5A10.46210.04870.35470.053*
H5A20.37630.10160.28230.053*
H5A30.33560.00640.28850.053*
C60.0830 (4)0.0920 (2)0.3062 (2)0.0298 (8)
H6A0.06400.04410.27130.036*
H6B0.09100.14090.27420.036*
C7−0.0589 (4)0.1032 (2)0.3428 (2)0.0277 (8)
C7A−0.0691 (5)0.0366 (2)0.4014 (2)0.0371 (9)
H7A1−0.15930.04650.42390.056*
H7A20.02440.03740.44210.056*
H7A3−0.0790−0.01700.37590.056*
C7B−0.2054 (4)0.1054 (3)0.2809 (2)0.0359 (9)
H7B1−0.19740.14870.24360.054*
H7B2−0.29370.11650.30460.054*
H7B3−0.21990.05230.25440.054*
C9−0.0841 (5)0.2612 (2)0.3447 (2)0.0359 (9)
H9A−0.19520.25850.32050.043*
H9B−0.02590.26670.30310.043*
C10−0.0545 (5)0.3363 (2)0.3968 (3)0.0388 (10)
H10−0.09390.32400.44440.047*
C10A−0.1490 (5)0.4068 (3)0.3556 (4)0.0603 (15)
H10A−0.13330.45570.38840.091*
H10B−0.25850.39190.34440.091*
H10C−0.11630.41840.30720.091*
C120.1636 (4)0.4273 (2)0.4622 (2)0.0303 (8)
H120.08780.44060.49500.036*
C12A0.1744 (5)0.5016 (2)0.4101 (2)0.0382 (9)
H12A0.07390.51110.37590.057*
H12B0.25160.49070.37920.057*
H12C0.20450.55030.44210.057*
C130.3223 (4)0.4157 (2)0.5151 (2)0.0307 (8)
H13A0.35470.46910.53980.037*
H13B0.39640.40170.48240.037*
C140.3374 (4)0.3508 (2)0.5788 (2)0.0283 (8)
C14A0.2108 (4)0.3575 (2)0.6251 (2)0.0303 (8)
H14A0.10960.35390.59020.045*
H14B0.21980.41030.65220.045*
H14C0.22170.31270.66270.045*
C14B0.4963 (4)0.3570 (2)0.6320 (2)0.0324 (8)
H14D0.50520.31570.67280.049*
H14E0.50950.41190.65500.049*
H14F0.57610.34740.60230.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0281 (5)0.0333 (5)0.0438 (6)−0.0019 (3)0.0170 (4)−0.0056 (4)
Cl20.0403 (6)0.0380 (6)0.0367 (6)−0.0025 (4)0.0157 (4)−0.0013 (4)
O10.0288 (18)0.183 (5)0.060 (2)0.005 (2)0.0121 (16)−0.045 (3)
O20.0232 (13)0.0397 (15)0.0448 (16)0.0018 (11)0.0129 (12)−0.0050 (12)
O30.050 (2)0.0422 (19)0.108 (3)−0.0004 (15)0.033 (2)−0.0312 (19)
O40.105 (4)0.058 (2)0.156 (4)0.017 (2)0.099 (3)0.041 (3)
O50.054 (2)0.059 (2)0.064 (2)0.0037 (16)0.0102 (17)0.0140 (17)
O60.0411 (18)0.065 (2)0.0484 (18)−0.0130 (15)0.0167 (14)−0.0025 (15)
O70.066 (2)0.064 (2)0.0416 (18)−0.0099 (17)0.0256 (16)0.0037 (15)
O80.059 (2)0.048 (2)0.079 (2)−0.0058 (16)0.0246 (19)−0.0237 (17)
N10.0215 (14)0.0253 (15)0.0294 (15)−0.0008 (11)0.0076 (12)−0.0010 (12)
N40.0254 (15)0.0241 (15)0.0266 (15)0.0005 (12)0.0060 (12)0.0015 (11)
N80.0244 (15)0.0257 (16)0.0331 (16)0.0010 (11)0.0038 (12)−0.0012 (12)
N110.0270 (16)0.0243 (15)0.0351 (17)0.0005 (12)0.0034 (13)−0.0022 (13)
C20.0209 (16)0.0318 (19)0.0351 (19)−0.0021 (14)0.0100 (14)−0.0056 (15)
C30.0215 (17)0.0288 (19)0.0335 (19)0.0040 (14)0.0077 (14)−0.0035 (15)
C3A0.042 (2)0.0269 (19)0.0326 (19)0.0072 (16)0.0011 (16)0.0004 (15)
C50.0285 (18)0.0262 (18)0.0306 (18)0.0004 (14)0.0066 (15)0.0007 (14)
C5A0.033 (2)0.040 (2)0.033 (2)0.0050 (16)0.0093 (16)−0.0067 (16)
C60.0291 (19)0.0305 (19)0.0285 (18)−0.0015 (15)0.0031 (15)−0.0012 (14)
C70.0265 (18)0.0245 (18)0.0322 (18)−0.0002 (14)0.0063 (15)−0.0017 (14)
C7A0.037 (2)0.029 (2)0.047 (2)−0.0034 (16)0.0130 (18)0.0046 (17)
C7B0.030 (2)0.039 (2)0.037 (2)−0.0044 (16)0.0045 (16)−0.0062 (17)
C90.0295 (19)0.0266 (19)0.046 (2)0.0020 (15)−0.0040 (17)0.0040 (16)
C100.029 (2)0.028 (2)0.057 (3)0.0031 (15)0.0028 (18)−0.0041 (18)
C10A0.038 (2)0.036 (2)0.098 (4)0.0065 (19)−0.009 (3)−0.004 (2)
C120.0304 (19)0.0231 (18)0.039 (2)0.0022 (14)0.0106 (16)0.0008 (15)
C12A0.042 (2)0.0270 (19)0.045 (2)−0.0008 (16)0.0084 (18)0.0078 (16)
C130.0320 (19)0.0232 (18)0.037 (2)−0.0056 (14)0.0078 (16)−0.0025 (15)
C140.0271 (18)0.0242 (18)0.0342 (19)−0.0027 (14)0.0077 (15)−0.0041 (14)
C14A0.0298 (19)0.0287 (18)0.0336 (19)0.0019 (14)0.0095 (15)−0.0044 (15)
C14B0.0285 (19)0.032 (2)0.035 (2)−0.0031 (15)0.0044 (15)−0.0068 (15)

Geometric parameters (Å, °)

Cl1—O41.408 (4)C6—C71.542 (5)
Cl1—O31.418 (3)C6—H6A0.9900
Cl1—O11.435 (4)C6—H6B0.9900
Cl1—O21.445 (3)C7—C7B1.516 (5)
Cl2—O71.427 (3)C7—C7A1.520 (5)
Cl2—O81.431 (3)C7A—H7A10.9800
Cl2—O51.440 (4)C7A—H7A20.9800
Cl2—O61.446 (3)C7A—H7A30.9800
N1—C21.493 (4)C7B—H7B10.9800
N1—C141.528 (4)C7B—H7B20.9800
N1—H1N0.9200C7B—H7B30.9800
N1—H2N0.9200C9—C101.524 (6)
N4—C51.489 (4)C9—H9A0.9900
N4—C31.489 (4)C9—H9B0.9900
N4—H4N0.8800C10—C10A1.517 (6)
N8—C91.485 (5)C10—H101.0000
N8—C71.526 (4)C10A—H10A0.9800
N8—H8N0.9200C10A—H10B0.9800
N8—H9N0.9200C10A—H10C0.9800
N11—C121.481 (5)C12—C131.531 (5)
N11—C101.485 (5)C12—C12A1.539 (5)
N11—H11N0.8800C12—H121.0000
C2—C31.524 (5)C12A—H12A0.9800
C2—H2A0.9900C12A—H12B0.9800
C2—H2B0.9900C12A—H12C0.9800
C3—C3A1.518 (5)C13—C141.533 (5)
C3—H31.0000C13—H13A0.9900
C3A—H3A10.9800C13—H13B0.9900
C3A—H3A20.9800C14—C14B1.526 (5)
C3A—H3A30.9800C14—C14A1.529 (5)
C5—C61.523 (5)C14A—H14A0.9800
C5—C5A1.534 (5)C14A—H14B0.9800
C5—H51.0000C14A—H14C0.9800
C5A—H5A10.9800C14B—H14D0.9800
C5A—H5A20.9800C14B—H14E0.9800
C5A—H5A30.9800C14B—H14F0.9800
O4—Cl1—O3109.1 (3)C7B—C7—C6110.4 (3)
O4—Cl1—O1109.2 (3)C7A—C7—C6112.0 (3)
O3—Cl1—O1108.9 (3)N8—C7—C6107.4 (3)
O4—Cl1—O2111.1 (2)C7—C7A—H7A1109.5
O3—Cl1—O2111.18 (19)C7—C7A—H7A2109.5
O1—Cl1—O2107.27 (19)H7A1—C7A—H7A2109.5
O7—Cl2—O8110.3 (2)C7—C7A—H7A3109.5
O7—Cl2—O5110.3 (2)H7A1—C7A—H7A3109.5
O8—Cl2—O5109.6 (2)H7A2—C7A—H7A3109.5
O7—Cl2—O6109.1 (2)C7—C7B—H7B1109.5
O8—Cl2—O6109.7 (2)C7—C7B—H7B2109.5
O5—Cl2—O6107.8 (2)H7B1—C7B—H7B2109.5
C2—N1—C14117.5 (3)C7—C7B—H7B3109.5
C2—N1—H1N107.9H7B1—C7B—H7B3109.5
C14—N1—H1N107.9H7B2—C7B—H7B3109.5
C2—N1—H2N107.9N8—C9—C10112.2 (3)
C14—N1—H2N107.9N8—C9—H9A109.2
H1N—N1—H2N107.2C10—C9—H9A109.2
C5—N4—C3114.7 (3)N8—C9—H9B109.2
C5—N4—H4N109.0C10—C9—H9B109.2
C3—N4—H4N107.0H9A—C9—H9B107.9
C9—N8—C7118.3 (3)N11—C10—C10A116.3 (4)
C9—N8—H8N107.7N11—C10—C9109.1 (3)
C7—N8—H8N107.7C10A—C10—C9107.9 (4)
C9—N8—H9N107.7N11—C10—H10107.7
C7—N8—H9N107.7C10A—C10—H10107.7
H8N—N8—H9N107.1C9—C10—H10107.7
C12—N11—C10116.3 (3)C10—C10A—H10A109.5
C12—N11—H11N109.5C10—C10A—H10B109.5
C10—N11—H11N109.5H10A—C10A—H10B109.5
N1—C2—C3111.9 (3)C10—C10A—H10C109.5
N1—C2—H2A109.2H10A—C10A—H10C109.5
C3—C2—H2A109.2H10B—C10A—H10C109.5
N1—C2—H2B109.2N11—C12—C13109.9 (3)
C3—C2—H2B109.2N11—C12—C12A114.5 (3)
H2A—C2—H2B107.9C13—C12—C12A107.5 (3)
N4—C3—C3A111.4 (3)N11—C12—H12108.3
N4—C3—C2108.4 (3)C13—C12—H12108.3
C3A—C3—C2112.7 (3)C12A—C12—H12108.3
N4—C3—H3108.1C12—C12A—H12A109.5
C3A—C3—H3108.1C12—C12A—H12B109.5
C2—C3—H3108.1H12A—C12A—H12B109.5
C3—C3A—H3A1109.5C12—C12A—H12C109.5
C3—C3A—H3A2109.5H12A—C12A—H12C109.5
H3A1—C3A—H3A2109.5H12B—C12A—H12C109.5
C3—C3A—H3A3109.5C12—C13—C14117.7 (3)
H3A1—C3A—H3A3109.5C12—C13—H13A107.9
H3A2—C3A—H3A3109.5C14—C13—H13A107.9
N4—C5—C6108.5 (3)C12—C13—H13B107.9
N4—C5—C5A112.6 (3)C14—C13—H13B107.9
C6—C5—C5A111.4 (3)H13A—C13—H13B107.2
N4—C5—H5108.1C14B—C14—N1110.2 (3)
C6—C5—H5108.1C14B—C14—C14A110.4 (3)
C5A—C5—H5108.1N1—C14—C14A105.1 (3)
C5—C5A—H5A1109.5C14B—C14—C13109.7 (3)
C5—C5A—H5A2109.5N1—C14—C13108.5 (3)
H5A1—C5A—H5A2109.5C14A—C14—C13112.8 (3)
C5—C5A—H5A3109.5C14—C14A—H14A109.5
H5A1—C5A—H5A3109.5C14—C14A—H14B109.5
H5A2—C5A—H5A3109.5H14A—C14A—H14B109.5
C5—C6—C7116.9 (3)C14—C14A—H14C109.5
C5—C6—H6A108.1H14A—C14A—H14C109.5
C7—C6—H6A108.1H14B—C14A—H14C109.5
C5—C6—H6B108.1C14—C14B—H14D109.5
C7—C6—H6B108.1C14—C14B—H14E109.5
H6A—C6—H6B107.3H14D—C14B—H14E109.5
C7B—C7—C7A110.3 (3)C14—C14B—H14F109.5
C7B—C7—N8110.5 (3)H14D—C14B—H14F109.5
C7A—C7—N8106.0 (3)H14E—C14B—H14F109.5
C14—N1—C2—C3180.0 (3)C7—N8—C9—C10−179.3 (3)
C5—N4—C3—C3A−63.2 (4)C12—N11—C10—C10A49.5 (5)
C5—N4—C3—C2172.2 (3)C12—N11—C10—C9171.8 (3)
N1—C2—C3—N462.0 (4)N8—C9—C10—N1170.5 (4)
N1—C2—C3—C3A−61.8 (4)N8—C9—C10—C10A−162.3 (4)
C3—N4—C5—C6169.6 (3)C10—N11—C12—C13152.2 (3)
C3—N4—C5—C5A−66.6 (4)C10—N11—C12—C12A−86.7 (4)
N4—C5—C6—C7−63.7 (4)N11—C12—C13—C14−61.2 (4)
C5A—C5—C6—C7171.8 (3)C12A—C12—C13—C14173.6 (3)
C9—N8—C7—C7B−37.0 (4)C2—N1—C14—C14B−44.5 (4)
C9—N8—C7—C7A−156.5 (3)C2—N1—C14—C14A−163.4 (3)
C9—N8—C7—C683.6 (4)C2—N1—C14—C1375.7 (4)
C5—C6—C7—C7B−173.8 (3)C12—C13—C14—C14B−171.8 (3)
C5—C6—C7—C7A−50.5 (4)C12—C13—C14—N167.7 (4)
C5—C6—C7—N865.6 (4)C12—C13—C14—C14A−48.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H2n···N110.922.072.841 (4)140
N8—H9n···N40.921.952.763 (5)146
N1—H1n···O20.922.372.963 (4)122
N1—H1n···O7i0.922.413.169 (4)140
N1—H2n···N40.922.562.929 (4)105
N4—H4n···O60.882.383.212 (4)158
N8—H8n···O10.922.022.937 (5)177
N11—H11n···O60.882.243.087 (5)162
C2—H2a···O1ii0.992.573.109 (5)114
C9—H9a···O5iii0.992.573.498 (6)155
C12a—H12b···O80.982.563.487 (5)158

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, y, z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5587).

References

  • Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705.
  • Benson, R. E., Roy, T. G., Hazari, S. K. S., Barua, K. K. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o1968–o1970.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Curtis, N. F., Swann, D. A., Waters, T. N. & Maxwell, I. E. (1969). J. Am. Chem. Soc.91, 4588–4589.
  • Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr 38, 1–8.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Roy, T. G., Hazari, S. K. S., Barua, K. K., Kim, D. I., Park, Y. C. & Tiekink, E. R. T. (2008). Appl. Organomet. Chem.22, 637–646.
  • Roy, T. G., Hazari, S. K. S., Dey, B. K., Sutradhar, R., Dey, L., Anowar, N. & Tiekink, E. R. T. (2006). J. Coord. Chem.59, 351–362.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography