PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2344–o2345.
Published online 2010 August 18. doi:  10.1107/S1600536810030849
PMCID: PMC3007924

Methyl (Z)-3-({5-[(E)-(tert-butyl­amino)­methyl­idene]-4-oxo-4,5-dihydro-1,3-thia­zol-2-yl}sulfan­yl)prop-2-enoate

Abstract

In the title compound, C12H16N2O3S2, the S-vinyl, and tert-butyl­enamine fragments make dihedral angles of 14.19 (2) and 0.85 (2)°, respectively, with the thia­zole ring. In the crystal, mol­ecules are linked into chains with graph-set motifs C(5) along [100] by C—H(...)O inter­actions. The mol­ecular conformation is stabilized by an intra­molecular N—H(...)O hydrogen bond.

Related literature

The thia­zole ring system can be found in natural compounds such as thia­mine (Baia, et al., 2008 [triangle]) and scleritodermin A (Wu & Yang, 2007 [triangle]). Thia­zole derivatives exhibit varied pharmaceutical properties including anti­cancer (Lesyk et al., 2006 [triangle], 2007 [triangle]), anti­convulsant (Siddiqui & Ahsan, 2010 [triangle]), anti­psychotic (Satoh et al., 2009 [triangle]), anti­bacterial and anti­fungal (Abdel-Wahab et al., 2009 [triangle]; Vijaya Raj et al., 2007 [triangle]), anti­tubercular (Shiradkar, Murahari et al., 2007 [triangle]), anti­microbial (Shiradkar, Kumar et al., 2007 [triangle]), analgesic and anti-inflammatory (Koz’minykh et al., 2004 [triangle]). For synthetic methods for thiazoles, see: Andrushko et al. (2001 [triangle]); Bourahla et al. (2007 [triangle]); Fakhari et al. (2008 [triangle]); Potikha et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2344-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O3S2
  • M r = 300.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2344-efi1.jpg
  • a = 6.011 (2) Å
  • b = 19.333 (7) Å
  • c = 12.870 (5) Å
  • β = 96.502 (8)°
  • V = 1485.9 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 120 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.951, T max = 0.965
  • 15867 measured reflections
  • 3939 independent reflections
  • 3125 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.108
  • S = 1.00
  • 3939 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030849/bx2284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030849/bx2284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr H. Golchoubian for his help with the data collection.

supplementary crystallographic information

Comment

The thiazole ring system can be fined in natural compounds like thiamine (vitamin B1) (Baia, et al., 2008), bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007). Thiazole derivatives exhibit different pharmaceutical properties, among them are: anticancer (Lesyk et al., 2007; & Lesyk et al., 2006), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic-like (Satoh et al., 2009), antibacterial, antifungal (Abdel-Wahab et al., 2009; & Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004) activities. These compounds have been synthesized using different methods (Andrushko et al., 2001; & Bourahla et al., 2007; & Fakhari et al., 2008; & Potikha et al., 2008). We have succeeded in synthesizing a thiazole derivative using a three step reaction. methods for theirWe report here the synthesis and crystal structure of the title compound (I). The molecular structure of (I) is illustrated in Fig 1. The fragments S-vinyl, and tert-butyl enamine makes angles of 14.19 (2) and 0.85 (2)° with the thiazole ring. In the crystal the molecules are linked into chains along [100] direction with graph-set notation C(5) motifs by a C—H···O interaction, (Bernstein, et al., 1995) Fig. 2. The molecular conformation is stabilized by two intramolecular N—H···O and C—H···O hydrogen bonds. Z-configuration was assigned to the geometry of S-vinyl system on the basis of torsion angle of -1.86 (4)° between atom S2 and methoxy carbonyl group.

Experimental

To a magnetically stirred solution of rhodanine (0.27 g, 2 mmol) and methyl acetylenecarboxylate (0.17 g, 2 mmol) in 10 ml CH~2~Cl~2~, was added dropwise over 10 min, tert-butyl isocyanide (0.45 g, 2 mmol) in 2 ml CH2Cl2 . The mixture was then refluxed for 24 h. The solvent was removed under pressure and the residue was purified by silica gel (Merck 230-400 mesh) column chromatography using n-hexane-diethyl ether (2:3) as eluent. Three products were isolated. The single crystals of the title compound were obtained from the n-hexane-ethyl acetate solution. Orange powder, yield 20%. 1H NMR (300 MHz, CDCl3): δ = 1.39 (9H, s, CMe3), 3.78 (3H, s, OMe), 6.12 (1H, d, 3JHH= 10.0 Hz, S—CH=CH), 7.52 (1H, d, 3JHH = 13.4 Hz, NH—CH=C), 8.41 (1H, d, 3JHH = 10.0 Hz, S—CH=CH), 10.12 (1H, d, 3JHH = 13.4 Hz, NH—CH=C). 13CNMR (75.5 MHz, CDCl3): δ= 29.94 (CMe3), 51.91 (OCH3), 53.98 (CMe3), 96.52 (NH— CH=C), 115.38 (CH=CH—C=O), 139.29 (CH=CH—C=O), 145.10 (NH—CH=C), 166.86 (C=N), 177.42 and 179.48 (2 C=O). IR (KBr) (ν/cm-1): 3313-3562 (NH), 1699 and 1643 (2 C=O), 1578 (C=N).

Refinement

The hydrogen atom of NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines show N—H··· O intramolecular interaction.
Fig. 2.
The crystal packing of the title compound viewed down the c-axis showing linking of molecules along the a-axis by the intermolecular C—H···O hydrogen bonds. The dashed lines show intermolecular interactions.

Crystal data

C12H16N2O3S2F(000) = 632
Mr = 300.39Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1769 reflections
a = 6.011 (2) Åθ = 2–25°
b = 19.333 (7) ŵ = 0.36 mm1
c = 12.870 (5) ÅT = 120 K
β = 96.502 (8)°Prism, orange
V = 1485.9 (10) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3939 independent reflections
Radiation source: fine-focus sealed tube3125 reflections with I > 2σ(I)
graphiteRint = 0.052
phi and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −8→8
Tmin = 0.951, Tmax = 0.965k = −26→26
15867 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.010P)2 + 1.980P] where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.50629 (8)0.53451 (3)0.63467 (4)0.03196 (13)
S20.20485 (8)0.62005 (3)0.49185 (4)0.03050 (13)
O10.0477 (2)0.46226 (9)0.78666 (12)0.0376 (4)
O20.1152 (3)0.72490 (9)0.34743 (13)0.0459 (4)
O3−0.2299 (3)0.75225 (9)0.27204 (13)0.0438 (4)
N10.0743 (3)0.53679 (9)0.64593 (13)0.0282 (3)
N20.4543 (3)0.40971 (9)0.87697 (14)0.0318 (4)
H2N0.31010.40700.88920.038*
C10.2330 (3)0.56032 (10)0.59558 (15)0.0258 (4)
C20.4049 (3)0.48646 (10)0.73331 (15)0.0269 (4)
C30.1648 (3)0.49260 (10)0.72696 (15)0.0272 (4)
C4−0.0858 (3)0.62176 (10)0.46463 (15)0.0276 (4)
H4A−0.17000.59040.50140.033*
C5−0.1981 (4)0.66419 (10)0.39564 (16)0.0305 (4)
H5A−0.35670.66080.38400.037*
C6−0.0849 (4)0.71564 (11)0.33756 (16)0.0324 (4)
C7−0.1334 (6)0.80731 (14)0.2156 (2)0.0577 (7)
H7A−0.24720.82590.16240.087*
H7B−0.00760.78910.18170.087*
H7C−0.08000.84420.26450.087*
C80.5374 (3)0.44672 (10)0.80461 (16)0.0294 (4)
H8A0.69450.44600.80140.035*
C90.5922 (4)0.36708 (12)0.95625 (17)0.0361 (5)
C100.4347 (5)0.3335 (2)1.0225 (3)0.0814 (12)
H10A0.33030.30380.97880.122*
H10B0.35050.36921.05550.122*
H10C0.51970.30551.07670.122*
C110.7586 (5)0.41439 (16)1.0220 (2)0.0563 (7)
H11A0.67610.45011.05580.084*
H11B0.85830.43640.97660.084*
H11C0.84750.38691.07560.084*
C120.7262 (5)0.31403 (14)0.9007 (2)0.0548 (7)
H12A0.62310.28440.85620.082*
H12B0.81570.28560.95290.082*
H12C0.82580.33820.85750.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0213 (2)0.0381 (3)0.0374 (3)0.00031 (19)0.00743 (19)0.0062 (2)
S20.0267 (2)0.0302 (2)0.0356 (3)−0.00246 (19)0.00762 (19)0.0066 (2)
O10.0256 (7)0.0497 (9)0.0387 (8)−0.0037 (6)0.0087 (6)0.0120 (7)
O20.0472 (10)0.0462 (10)0.0439 (9)−0.0114 (8)0.0037 (7)0.0139 (8)
O30.0543 (10)0.0398 (9)0.0380 (9)0.0094 (8)0.0081 (7)0.0129 (7)
N10.0239 (8)0.0303 (8)0.0313 (8)−0.0003 (6)0.0068 (6)0.0025 (7)
N20.0248 (8)0.0362 (9)0.0348 (9)0.0008 (7)0.0058 (7)0.0050 (7)
C10.0234 (9)0.0245 (9)0.0296 (9)−0.0002 (7)0.0044 (7)−0.0018 (7)
C20.0253 (9)0.0271 (9)0.0289 (10)−0.0021 (7)0.0061 (7)0.0007 (7)
C30.0249 (9)0.0284 (9)0.0285 (9)−0.0022 (7)0.0043 (7)−0.0007 (8)
C40.0274 (9)0.0264 (9)0.0300 (10)−0.0016 (7)0.0081 (7)−0.0017 (7)
C50.0324 (10)0.0292 (10)0.0302 (10)0.0011 (8)0.0049 (8)−0.0019 (8)
C60.0431 (12)0.0279 (10)0.0264 (10)0.0009 (9)0.0043 (8)−0.0012 (8)
C70.080 (2)0.0452 (14)0.0496 (15)0.0083 (14)0.0150 (14)0.0224 (12)
C80.0236 (9)0.0312 (10)0.0339 (10)−0.0012 (7)0.0049 (7)−0.0029 (8)
C90.0378 (11)0.0367 (11)0.0332 (11)0.0052 (9)0.0018 (9)0.0067 (9)
C100.0503 (17)0.109 (3)0.087 (2)0.0109 (18)0.0177 (16)0.059 (2)
C110.0666 (18)0.0566 (17)0.0426 (14)0.0052 (14)−0.0073 (13)−0.0017 (12)
C120.0664 (18)0.0447 (14)0.0521 (16)0.0155 (13)0.0012 (13)0.0014 (12)

Geometric parameters (Å, °)

S1—C11.736 (2)C5—H5A0.9500
S1—C21.738 (2)C7—H7A0.9800
S2—C41.743 (2)C7—H7B0.9800
S2—C11.759 (2)C7—H7C0.9800
O1—C31.246 (2)C8—H8A0.9500
O2—C61.209 (3)C9—C101.493 (4)
O3—C61.343 (3)C9—C121.530 (3)
O3—C71.447 (3)C9—C111.537 (4)
N1—C11.295 (2)C10—H10A0.9800
N1—C31.409 (3)C10—H10B0.9800
N2—C81.317 (3)C10—H10C0.9800
N2—C91.488 (3)C11—H11A0.9800
N2—H2N0.9000C11—H11B0.9800
C2—C81.379 (3)C11—H11C0.9800
C2—C31.441 (3)C12—H12A0.9800
C4—C51.335 (3)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C5—C61.458 (3)
C1—S1—C288.09 (10)H7A—C7—H7C109.5
C4—S2—C199.97 (9)H7B—C7—H7C109.5
C6—O3—C7115.7 (2)N2—C8—C2122.48 (19)
C1—N1—C3109.79 (16)N2—C8—H8A118.8
C8—N2—C9124.02 (18)C2—C8—H8A118.8
C8—N2—H2N127.3N2—C9—C10107.0 (2)
C9—N2—H2N108.6N2—C9—C12109.43 (19)
N1—C1—S1118.72 (15)C10—C9—C12112.1 (3)
N1—C1—S2126.69 (15)N2—C9—C11108.98 (19)
S1—C1—S2114.53 (11)C10—C9—C11111.1 (2)
C8—C2—C3125.64 (18)C12—C9—C11108.2 (2)
C8—C2—S1124.06 (15)C9—C10—H10A109.5
C3—C2—S1110.26 (14)C9—C10—H10B109.5
O1—C3—N1122.95 (18)H10A—C10—H10B109.5
O1—C3—C2123.95 (18)C9—C10—H10C109.5
N1—C3—C2113.10 (16)H10A—C10—H10C109.5
C5—C4—S2124.43 (16)H10B—C10—H10C109.5
C5—C4—H4A117.8C9—C11—H11A109.5
S2—C4—H4A117.8C9—C11—H11B109.5
C4—C5—C6122.0 (2)H11A—C11—H11B109.5
C4—C5—H5A119.0C9—C11—H11C109.5
C6—C5—H5A119.0H11A—C11—H11C109.5
O2—C6—O3123.7 (2)H11B—C11—H11C109.5
O2—C6—C5124.3 (2)C9—C12—H12A109.5
O3—C6—C5111.96 (19)C9—C12—H12B109.5
O3—C7—H7A109.5H12A—C12—H12B109.5
O3—C7—H7B109.5C9—C12—H12C109.5
H7A—C7—H7B109.5H12A—C12—H12C109.5
O3—C7—H7C109.5H12B—C12—H12C109.5
C3—N1—C1—S10.2 (2)S1—C2—C3—N1−1.8 (2)
C3—N1—C1—S2−177.08 (15)C1—S2—C4—C5174.49 (18)
C2—S1—C1—N1−1.00 (17)S2—C4—C5—C6−1.9 (3)
C2—S1—C1—S2176.56 (12)C7—O3—C6—O2−2.9 (3)
C4—S2—C1—N1−11.2 (2)C7—O3—C6—C5176.5 (2)
C4—S2—C1—S1171.44 (11)C4—C5—C6—O2−1.0 (3)
C1—S1—C2—C8179.57 (19)C4—C5—C6—O3179.54 (19)
C1—S1—C2—C31.47 (15)C9—N2—C8—C2−179.01 (19)
C1—N1—C3—O1−179.05 (19)C3—C2—C8—N2−0.7 (3)
C1—N1—C3—C21.0 (2)S1—C2—C8—N2−178.46 (16)
C8—C2—C3—O10.3 (3)C8—N2—C9—C10−179.7 (3)
S1—C2—C3—O1178.34 (17)C8—N2—C9—C12−58.0 (3)
C8—C2—C3—N1−179.81 (19)C8—N2—C9—C1160.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.902.212.777 (2)120
C4—H4A···N10.952.462.926 (3)110
C8—H8A···O1i0.952.183.117 (3)171

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2284).

References

  • Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem.44, 2632–2635. [PubMed]
  • Andrushko, A. P., Demchenko, A. M., Krasovskii, A. N., Rusanov, E. B., Chemega, A. N. & Lozinskii, M. O. (2001). Russ. J. Gen. Chem.71, 1754–1758.
  • Baia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125–142. Berlin, Heidelberg: Springer
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573
  • Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F. & Bazureau, J. P. (2007). Tetrahedron Lett.48, 5785–5789.
  • Bruker (1998). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fakhari, A. R., Hosseiny Davarani, S. S., Ahmar, H. & Makarem, S. (2008). J. Appl. Electrochem.38, 1743–1747.
  • Koz’minykh, V. O., Milyutin, A. V., Makhmudov, R. R., Belyaev, A. O. & Koz’minykh, E. N. (2004). Pharmaceutical Chem. J.38, 665–669.
  • Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem.42, 641–648. [PubMed]
  • Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem.14, 5230–5240. [PubMed]
  • Potikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Comp.44, 86–91.
  • Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett.19, 5464–5468. [PubMed]
  • Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem.42, 807–816. [PubMed]
  • Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Kaur, D. P. R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem.15, 3997–4008. [PubMed]
  • Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem.45, 1536–1543. [PubMed]
  • Vijaya Raj, K. K., Narayana, B., Ashalatha, B. V., Suchetha Kumari, N. & Sarojini, B. K. (2007). Eur. J. Med. Chem.42, 425–429. [PubMed]
  • Wu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem.18, 247–275.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography