PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2337.
Published online 2010 August 18. doi:  10.1107/S1600536810032332
PMCID: PMC3007923

N-(4-Chloro­benzyl­idene)-1-naphthyl­amine

Abstract

The title compound, C17H12ClN, represents a trans isomer with respect to the C=N bond; the dihedral angle between the planes of the naphthyl and benzene groups is 66.53 (5)°.

Related literature

For general background on the properties of Schiff bases, see: Layer (1963 [triangle]); Chen et al. (2008 [triangle]); May et al. (2004 [triangle]); Weber et al. (2007 [triangle]). For related structures, see: Harada et al. (2004 [triangle]); Tariq et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2337-scheme1.jpg

Experimental

Crystal data

  • C17H12ClN
  • M r = 265.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2337-efi1.jpg
  • a = 12.8416 (13) Å
  • b = 14.8771 (15) Å
  • c = 7.1971 (8) Å
  • β = 92.857 (1)°
  • V = 1373.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.925, T max = 0.949
  • 6607 measured reflections
  • 2421 independent reflections
  • 1489 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.127
  • S = 1.03
  • 2421 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810032332/ya2125sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032332/ya2125Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The Schiff bases have been receiving considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber et al., 2007), catalytic (Chen et al., 2008) and biological properties (May et al.,2004).

As a part of our studies on synthesis and structural peculiarities of Schiff bases derived from naphthylamine and arylaldehydes, we determined the structure of the title compound (Fig. 1). The molecule represents a trans-isomer with respect to the C11═N1 bond. The planes of the aromatic systems of the the naphthyl and benzene groups, C1–C10 and C12–C17 respectively, form dihedral angle of 66.53 (5)°.

Experimental

1-Naphthylamine (0.72 g, 5 mmol) and 4-chlorobenzaldehyde (0.70 g, 5 mmol) were dissolved in ethanol (20 ml). The mixture was refluxed for 6 h, and then cooled to room temperature. The reaction mixture was filtered and the filter cake was recrystallized from ethyl alcohol (yield 80%).Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H12ClNF(000) = 552
Mr = 265.73Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1396 reflections
a = 12.8416 (13) Åθ = 3.0–21.8°
b = 14.8771 (15) ŵ = 0.26 mm1
c = 7.1971 (8) ÅT = 296 K
β = 92.857 (1)°Prism, colourless
V = 1373.3 (2) Å30.30 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2421 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.925, Tmax = 0.949k = −17→13
6607 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2941P] where P = (Fo2 + 2Fc2)/3
2421 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.41202 (5)0.30834 (6)1.24470 (11)0.0803 (3)
N10.92436 (15)0.37176 (15)0.8844 (3)0.0512 (6)
C10.81851 (19)0.36531 (17)0.8206 (4)0.0481 (6)
C20.7440 (2)0.3300 (2)0.9273 (4)0.0593 (8)
H20.76340.30451.04180.071*
C30.6383 (2)0.3315 (2)0.8669 (4)0.0733 (9)
H30.58850.30710.94160.088*
C40.6086 (2)0.3681 (2)0.7013 (5)0.0713 (9)
H40.53830.36910.66350.086*
C50.6828 (2)0.40512 (19)0.5839 (4)0.0553 (7)
C60.78968 (18)0.40408 (17)0.6440 (3)0.0456 (6)
C70.8628 (2)0.44051 (18)0.5263 (4)0.0545 (7)
H70.93310.44020.56420.065*
C80.8331 (3)0.4761 (2)0.3586 (4)0.0705 (9)
H80.88300.49960.28290.085*
C90.7281 (3)0.4776 (2)0.2989 (4)0.0786 (10)
H90.70830.50220.18370.094*
C100.6545 (2)0.4433 (2)0.4087 (4)0.0710 (9)
H100.58470.44490.36790.085*
C110.97066 (19)0.30238 (18)0.9492 (3)0.0484 (6)
H110.93510.24790.94600.058*
C121.07745 (18)0.30453 (17)1.0286 (3)0.0422 (6)
C131.13264 (19)0.22522 (18)1.0563 (3)0.0482 (6)
H131.09970.17061.03060.058*
C141.23542 (19)0.2257 (2)1.1212 (3)0.0535 (7)
H141.27200.17211.13810.064*
C151.28284 (18)0.3068 (2)1.1604 (3)0.0506 (7)
C161.22982 (19)0.3865 (2)1.1386 (3)0.0544 (7)
H161.26280.44061.16860.065*
C171.12764 (19)0.38576 (18)1.0719 (3)0.0512 (7)
H171.09170.43971.05560.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0504 (4)0.1022 (8)0.0871 (6)0.0088 (4)−0.0083 (4)−0.0073 (5)
N10.0495 (12)0.0453 (14)0.0580 (14)−0.0005 (10)−0.0057 (10)0.0032 (11)
C10.0474 (14)0.0401 (16)0.0566 (16)−0.0019 (12)0.0021 (12)−0.0045 (13)
C20.0577 (16)0.064 (2)0.0564 (17)−0.0055 (14)0.0024 (13)0.0084 (15)
C30.0532 (17)0.087 (3)0.080 (2)−0.0136 (16)0.0116 (15)0.0087 (19)
C40.0469 (16)0.076 (2)0.090 (2)−0.0074 (15)−0.0090 (16)0.0031 (19)
C50.0555 (16)0.0449 (17)0.0643 (18)−0.0041 (13)−0.0087 (14)−0.0053 (14)
C60.0491 (14)0.0347 (15)0.0527 (16)−0.0026 (11)0.0008 (12)−0.0058 (13)
C70.0585 (16)0.0439 (17)0.0614 (18)−0.0009 (13)0.0067 (13)−0.0023 (14)
C80.089 (2)0.059 (2)0.064 (2)−0.0085 (17)0.0048 (17)0.0063 (16)
C90.107 (3)0.063 (2)0.063 (2)−0.011 (2)−0.0192 (19)0.0083 (17)
C100.074 (2)0.059 (2)0.077 (2)−0.0077 (17)−0.0272 (17)0.0013 (18)
C110.0543 (15)0.0436 (17)0.0476 (14)−0.0036 (13)0.0042 (12)0.0021 (13)
C120.0498 (13)0.0404 (16)0.0366 (13)−0.0005 (12)0.0034 (10)0.0047 (12)
C130.0569 (15)0.0388 (16)0.0495 (15)−0.0004 (13)0.0080 (12)0.0035 (13)
C140.0576 (16)0.0502 (18)0.0531 (16)0.0134 (14)0.0082 (13)0.0073 (14)
C150.0462 (14)0.0599 (19)0.0457 (15)0.0067 (14)0.0038 (11)−0.0010 (14)
C160.0536 (15)0.0518 (19)0.0574 (17)−0.0033 (14)−0.0015 (13)−0.0066 (14)
C170.0561 (15)0.0435 (17)0.0534 (16)0.0048 (13)−0.0033 (12)0.0022 (13)

Geometric parameters (Å, °)

Cl1—C151.738 (2)C8—H80.9300
N1—C111.268 (3)C9—C101.361 (4)
N1—C11.416 (3)C9—H90.9300
C1—C21.361 (4)C10—H100.9300
C1—C61.427 (3)C11—C121.459 (3)
C2—C31.405 (4)C11—H110.9300
C2—H20.9300C12—C131.386 (3)
C3—C41.348 (4)C12—C171.397 (3)
C3—H30.9300C13—C141.378 (3)
C4—C51.416 (4)C13—H130.9300
C4—H40.9300C14—C151.375 (4)
C5—C101.414 (4)C14—H140.9300
C5—C61.419 (3)C15—C161.372 (4)
C6—C71.404 (3)C16—C171.375 (3)
C7—C81.355 (4)C16—H160.9300
C7—H70.9300C17—H170.9300
C8—C91.395 (4)
C11—N1—C1119.3 (2)C10—C9—H9119.9
C2—C1—N1122.2 (2)C8—C9—H9119.9
C2—C1—C6120.0 (2)C9—C10—C5120.9 (3)
N1—C1—C6117.6 (2)C9—C10—H10119.5
C1—C2—C3121.0 (3)C5—C10—H10119.5
C1—C2—H2119.5N1—C11—C12122.7 (2)
C3—C2—H2119.5N1—C11—H11118.6
C4—C3—C2120.5 (3)C12—C11—H11118.6
C4—C3—H3119.8C13—C12—C17118.5 (2)
C2—C3—H3119.8C13—C12—C11120.1 (2)
C3—C4—C5121.0 (3)C17—C12—C11121.3 (2)
C3—C4—H4119.5C14—C13—C12121.2 (2)
C5—C4—H4119.5C14—C13—H13119.4
C10—C5—C4122.5 (3)C12—C13—H13119.4
C10—C5—C6118.5 (3)C15—C14—C13118.8 (2)
C4—C5—C6118.9 (3)C15—C14—H14120.6
C7—C6—C5118.5 (2)C13—C14—H14120.6
C7—C6—C1122.8 (2)C16—C15—C14121.5 (2)
C5—C6—C1118.7 (2)C16—C15—Cl1119.2 (2)
C8—C7—C6121.4 (3)C14—C15—Cl1119.2 (2)
C8—C7—H7119.3C15—C16—C17119.5 (3)
C6—C7—H7119.3C15—C16—H16120.2
C7—C8—C9120.4 (3)C17—C16—H16120.2
C7—C8—H8119.8C16—C17—C12120.4 (2)
C9—C8—H8119.8C16—C17—H17119.8
C10—C9—C8120.2 (3)C12—C17—H17119.8
C11—N1—C1—C252.2 (4)C6—C7—C8—C90.2 (4)
C11—N1—C1—C6−132.8 (2)C7—C8—C9—C10−0.1 (5)
N1—C1—C2—C3174.4 (3)C8—C9—C10—C5−0.4 (5)
C6—C1—C2—C3−0.4 (4)C4—C5—C10—C9−179.5 (3)
C1—C2—C3—C40.1 (5)C6—C5—C10—C90.6 (4)
C2—C3—C4—C50.5 (5)C1—N1—C11—C12−176.0 (2)
C3—C4—C5—C10179.4 (3)N1—C11—C12—C13−164.6 (2)
C3—C4—C5—C6−0.7 (5)N1—C11—C12—C1713.0 (4)
C10—C5—C6—C7−0.4 (4)C17—C12—C13—C14−1.4 (4)
C4—C5—C6—C7179.7 (3)C11—C12—C13—C14176.3 (2)
C10—C5—C6—C1−179.8 (2)C12—C13—C14—C150.7 (4)
C4—C5—C6—C10.3 (4)C13—C14—C15—C160.8 (4)
C2—C1—C6—C7−179.1 (3)C13—C14—C15—Cl1179.32 (19)
N1—C1—C6—C75.8 (4)C14—C15—C16—C17−1.5 (4)
C2—C1—C6—C50.2 (4)Cl1—C15—C16—C17180.0 (2)
N1—C1—C6—C5−174.9 (2)C15—C16—C17—C120.7 (4)
C5—C6—C7—C80.0 (4)C13—C12—C17—C160.7 (4)
C1—C6—C7—C8179.3 (3)C11—C12—C17—C16−177.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2125).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Z. H., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc.130, 2170–2171. [PubMed]
  • Harada, J., Harakawa, M. & Ogawa, K. (2004). Acta Cryst. B60, 578–588. [PubMed]
  • Layer, R. W. (1963). Chem. Rev.63, 489–510.
  • May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc.126, 4145–4156. [PubMed]
  • Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561. [PMC free article] [PubMed]
  • Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem.633, 1159–1162.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography