PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1087.
Published online 2010 August 11. doi:  10.1107/S1600536810031636
PMCID: PMC3007920

(N-Benzyl-N-isopropyl­dithio­carbamato)chloridodiphenyl­tin(IV)

Abstract

The SnIV atom in the title organotin dithio­carbamate, [Sn(C6H5)2(C11H14NS2)Cl], is penta-coordinated by an asymmetrically coordinating dithio­carbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C2ClS2 donor set defines a coordination geometry inter­mediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intra­molecular C–H(...)Cl and C–H(...)S contacts precludes the Cl and S atoms from forming significant inter­molecular contacts. The presence of C–H(...)π contacts leads to the formation of supra­molecular arrays that stack along the b axis.

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008 [triangle]). For additional structural analysis, see: Addison et al. (1984 [triangle]); Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1087-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C11H14NS2Cl]
  • M r = 532.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1087-efi1.jpg
  • a = 9.1934 (1) Å
  • b = 15.1720 (2) Å
  • c = 16.8740 (2) Å
  • β = 96.497 (1)°
  • V = 2338.51 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.39 mm−1
  • T = 100 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.887, T max = 1.000
  • 54748 measured reflections
  • 5345 independent reflections
  • 4746 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.045
  • S = 1.04
  • 5345 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031636/su2203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031636/su2203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank UKM (UKM-GUP-NBT-08–27-111 and UKM-ST-06-FRGS0092–2010), UPM and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Tin, including organotin, dithiocarbamates continue to attract attention as they are known to exhibit properties suggesting their potential as anti-cancer agents, anti-microbial agents and insecticides (Tiekink, 2008).

The SnIV atom in the structure of the title compound is five-coordinated, being chelated by an asymmetrically coordinating dithiocarbamate ligand, a chloride and two ispo-C atoms of the Sn-bound phenyl groups, Fig. 1. The coordination geometry is intermediate between square pyramidal and trigonal bi-pyramidal with a leaning towards the latter. This assignment is based on the value calculated for τ of 0.54 for the Sn atom, which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison et al., 1984; Spek, 2009). The mode of coordination of the dithiocarbamate ligand, the disposition of the ligand donor set, and the intermediate coordination geometry matches with the literature precedents (Tiekink, 2008).

The formation of close intramolecular C–H···Cl and C–H···S contacts, Table 1, preclude the Cl and S atoms from forming significant intermolecular contacts. The most prominent intermolecular interactions are of the type C–H···π, involving the Sn-bound C7–C12 ring interacting with a methyl-H on one side and a phenyl-H on the other, Fig. 2 and Table 1. This results in the formation of supramolecular arrays in the ac plane which stack along the b axis, Fig. 3.

Experimental

Carbon disulfide (10 mmol) was added dropwise to an ethanol solution (100 ml) of N-benzyl-N-isopropyl (10 mmol). The solution was kept at 273 K for 1 h. Diphenyltin dichloride (5 mmol) dissolved in ethanol (20 ml) was added to give a white precipitate. This was collected and recrystallized from a chloroform/ethanol (1/2) mixture.

Refinement

C-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C-H = 1.0, 0.99, 0.98 and 0.95 Å for CH, CH2, CH3 and CH(aromatic) H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Figures

Fig. 1.
The molecular structure of the title complex showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the 2-D supramolecular array in the ac plane of the crystal structure of the title complex, with the C–H···π contacts shown as purple dashed lines.
Fig. 3.
A view in projection down the a axis of the crystal structure of the title complex, showing the stacking of the 2-D arrays along the b axis. The C–H···π contacts are shown as purple dashed lines.

Crystal data

[Sn(C6H5)2(C11H14NS2)Cl]F(000) = 1072
Mr = 532.69Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 34829 reflections
a = 9.1934 (1) Åθ = 2.2–29.2°
b = 15.1720 (2) ŵ = 1.39 mm1
c = 16.8740 (2) ÅT = 100 K
β = 96.497 (1)°Block, colourless
V = 2338.51 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer5345 independent reflections
Radiation source: fine-focus sealed tube4746 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 16.1952 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = −19→19
Tmin = 0.887, Tmax = 1.000l = −21→21
54748 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0285P)2] where P = (Fo2 + 2Fc2)/3
5345 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.33 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.677004 (10)0.690203 (6)0.688075 (5)0.01845 (4)
Cl10.76007 (4)0.53663 (2)0.68888 (2)0.03259 (9)
S10.58215 (4)0.65598 (2)0.81529 (2)0.02475 (8)
S20.54077 (4)0.83082 (2)0.73935 (2)0.02118 (8)
N10.41603 (13)0.78207 (8)0.86783 (7)0.0232 (3)
C10.88272 (15)0.75295 (10)0.67971 (8)0.0240 (3)
C20.99547 (18)0.70469 (11)0.65168 (10)0.0325 (4)
H20.98320.64340.64160.039*
C31.12574 (18)0.74585 (15)0.63840 (10)0.0439 (5)
H31.20240.71270.61950.053*
C41.14323 (19)0.83449 (15)0.65269 (12)0.0482 (5)
H41.23180.86270.64290.058*
C51.03361 (19)0.88287 (13)0.68104 (11)0.0438 (5)
H51.04690.94410.69100.053*
C60.90314 (17)0.84220 (11)0.69513 (10)0.0318 (4)
H60.82810.87560.71530.038*
C70.52428 (15)0.68234 (8)0.58354 (8)0.0185 (3)
C80.49266 (16)0.75798 (10)0.53744 (9)0.0242 (3)
H80.53730.81250.55390.029*
C90.39670 (17)0.75412 (11)0.46787 (9)0.0292 (3)
H90.37670.80570.43660.035*
C100.33020 (17)0.67518 (11)0.44404 (10)0.0297 (4)
H100.26460.67250.39640.036*
C110.35952 (16)0.59975 (10)0.48987 (9)0.0274 (3)
H110.31300.54570.47390.033*
C120.45682 (15)0.60357 (9)0.55895 (9)0.0227 (3)
H120.47750.55170.58970.027*
C130.50196 (15)0.76049 (9)0.81307 (8)0.0199 (3)
C140.34197 (16)0.86968 (10)0.86646 (9)0.0289 (3)
H140.33990.89380.81120.035*
C150.4319 (2)0.93275 (12)0.92244 (12)0.0431 (4)
H15A0.53210.93550.90810.065*
H15B0.43350.91180.97750.065*
H15C0.38790.99160.91780.065*
C160.18495 (18)0.86220 (12)0.88488 (11)0.0400 (4)
H16A0.13200.82060.84770.060*
H16B0.13790.92020.87920.060*
H16C0.18350.84100.93970.060*
C170.40459 (18)0.72348 (11)0.93638 (9)0.0294 (3)
H17A0.37410.75920.98080.035*
H17B0.50300.69940.95410.035*
C180.29886 (16)0.64710 (10)0.92112 (9)0.0249 (3)
C190.20502 (18)0.63709 (11)0.85206 (9)0.0316 (3)
H19A0.20800.67810.80970.038*
C200.1059 (2)0.56752 (11)0.84380 (12)0.0411 (4)
H200.04120.56140.79610.049*
C210.1015 (2)0.50811 (12)0.90402 (13)0.0519 (5)
H210.03250.46120.89880.062*
C220.1979 (3)0.51627 (13)0.97299 (13)0.0581 (6)
H220.19620.47431.01460.070*
C230.2960 (2)0.58509 (11)0.98129 (10)0.0406 (4)
H230.36220.59011.02860.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.01680 (6)0.01905 (6)0.01915 (6)0.00046 (4)0.00050 (4)−0.00322 (3)
Cl10.0362 (2)0.02243 (19)0.0372 (2)0.00957 (16)−0.00441 (17)−0.00494 (15)
S10.0298 (2)0.02159 (18)0.02287 (18)−0.00067 (15)0.00296 (15)0.00143 (14)
S20.02277 (18)0.01888 (17)0.02314 (18)−0.00102 (13)0.00801 (14)−0.00170 (13)
N10.0239 (6)0.0260 (6)0.0202 (6)−0.0069 (5)0.0053 (5)−0.0045 (5)
C10.0161 (7)0.0360 (9)0.0193 (7)−0.0015 (6)−0.0004 (5)0.0015 (6)
C20.0256 (8)0.0448 (10)0.0275 (8)0.0053 (7)0.0045 (7)0.0010 (7)
C30.0212 (8)0.0748 (14)0.0370 (10)0.0076 (9)0.0090 (7)0.0106 (9)
C40.0207 (9)0.0789 (15)0.0442 (11)−0.0136 (9)0.0004 (8)0.0186 (10)
C50.0319 (9)0.0488 (11)0.0491 (11)−0.0161 (8)−0.0028 (8)0.0075 (9)
C60.0242 (8)0.0358 (9)0.0348 (9)−0.0062 (7)0.0010 (7)−0.0008 (7)
C70.0158 (6)0.0212 (7)0.0186 (7)0.0015 (5)0.0014 (5)−0.0037 (5)
C80.0244 (8)0.0208 (8)0.0274 (8)0.0002 (6)0.0037 (6)−0.0017 (6)
C90.0291 (8)0.0311 (9)0.0267 (8)0.0091 (7)0.0007 (6)0.0044 (6)
C100.0219 (8)0.0421 (10)0.0236 (8)0.0054 (7)−0.0042 (6)−0.0049 (7)
C110.0212 (7)0.0296 (8)0.0309 (8)−0.0034 (6)0.0011 (6)−0.0092 (6)
C120.0219 (7)0.0206 (7)0.0256 (7)0.0004 (6)0.0031 (6)−0.0017 (6)
C130.0183 (7)0.0222 (7)0.0188 (7)−0.0066 (6)0.0003 (5)−0.0053 (5)
C140.0297 (8)0.0274 (8)0.0317 (8)−0.0026 (7)0.0132 (7)−0.0076 (6)
C150.0418 (10)0.0331 (10)0.0560 (12)−0.0112 (8)0.0128 (9)−0.0188 (8)
C160.0332 (9)0.0421 (10)0.0477 (11)−0.0030 (8)0.0179 (8)−0.0098 (8)
C170.0318 (8)0.0393 (9)0.0177 (7)−0.0093 (7)0.0046 (6)−0.0023 (6)
C180.0271 (8)0.0251 (8)0.0241 (7)−0.0007 (6)0.0095 (6)−0.0019 (6)
C190.0343 (9)0.0287 (9)0.0316 (8)−0.0063 (7)0.0026 (7)−0.0001 (7)
C200.0382 (10)0.0344 (10)0.0516 (11)−0.0104 (8)0.0083 (8)−0.0124 (8)
C210.0649 (13)0.0325 (10)0.0636 (13)−0.0202 (9)0.0301 (11)−0.0113 (9)
C220.0979 (18)0.0314 (10)0.0502 (12)−0.0109 (11)0.0309 (12)0.0071 (9)
C230.0587 (12)0.0353 (10)0.0288 (9)0.0018 (9)0.0100 (8)0.0027 (7)

Geometric parameters (Å, °)

Sn—S12.4621 (4)C10—H100.9500
Sn—S22.6672 (4)C11—C121.388 (2)
Sn—C12.1362 (14)C11—H110.9500
Sn—C72.1300 (14)C12—H120.9500
Sn—Cl12.4515 (4)C14—C161.515 (2)
S1—C131.7472 (15)C14—C151.521 (2)
S2—C131.7070 (14)C14—H141.0000
N1—C131.3230 (18)C15—H15A0.9800
N1—C171.4721 (19)C15—H15B0.9800
N1—C141.492 (2)C15—H15C0.9800
C1—C61.388 (2)C16—H16A0.9800
C1—C21.395 (2)C16—H16B0.9800
C2—C31.391 (2)C16—H16C0.9800
C2—H20.9500C17—C181.516 (2)
C3—C41.373 (3)C17—H17A0.9900
C3—H30.9500C17—H17B0.9900
C4—C51.376 (3)C18—C191.378 (2)
C4—H40.9500C18—C231.387 (2)
C5—C61.393 (2)C19—C201.391 (2)
C5—H50.9500C19—H19A0.9500
C6—H60.9500C20—C211.363 (3)
C7—C121.3881 (19)C20—H200.9500
C7—C81.3984 (19)C21—C221.386 (3)
C8—C91.388 (2)C21—H210.9500
C8—H80.9500C22—C231.377 (3)
C9—C101.384 (2)C22—H220.9500
C9—H90.9500C23—H230.9500
C10—C111.390 (2)
C7—Sn—C1118.41 (5)C11—C12—C7120.71 (13)
C7—Sn—Cl197.30 (4)C11—C12—H12119.6
C1—Sn—Cl198.42 (4)C7—C12—H12119.6
C7—Sn—S1116.42 (4)N1—C13—S2123.01 (11)
C1—Sn—S1123.72 (4)N1—C13—S1119.57 (11)
Cl1—Sn—S186.307 (14)S2—C13—S1117.42 (8)
C7—Sn—S291.36 (4)N1—C14—C16111.95 (13)
C1—Sn—S296.70 (4)N1—C14—C15109.62 (13)
Cl1—Sn—S2156.326 (13)C16—C14—C15112.52 (13)
S1—Sn—S270.135 (12)N1—C14—H14107.5
C13—S1—Sn88.86 (5)C16—C14—H14107.5
C13—S2—Sn83.16 (5)C15—C14—H14107.5
C13—N1—C17120.05 (13)C14—C15—H15A109.5
C13—N1—C14121.13 (12)C14—C15—H15B109.5
C17—N1—C14118.49 (12)H15A—C15—H15B109.5
C6—C1—C2119.07 (14)C14—C15—H15C109.5
C6—C1—Sn121.63 (11)H15A—C15—H15C109.5
C2—C1—Sn119.07 (12)H15B—C15—H15C109.5
C1—C2—C3120.35 (17)C14—C16—H16A109.5
C1—C2—H2119.8C14—C16—H16B109.5
C3—C2—H2119.8H16A—C16—H16B109.5
C4—C3—C2119.83 (17)C14—C16—H16C109.5
C4—C3—H3120.1H16A—C16—H16C109.5
C2—C3—H3120.1H16B—C16—H16C109.5
C3—C4—C5120.53 (17)N1—C17—C18115.44 (12)
C3—C4—H4119.7N1—C17—H17A108.4
C5—C4—H4119.7C18—C17—H17A108.4
C4—C5—C6120.12 (18)N1—C17—H17B108.4
C4—C5—H5119.9C18—C17—H17B108.4
C6—C5—H5119.9H17A—C17—H17B107.5
C1—C6—C5120.07 (16)C19—C18—C23118.87 (15)
C1—C6—H6120.0C19—C18—C17123.79 (14)
C5—C6—H6120.0C23—C18—C17117.33 (14)
C12—C7—C8118.86 (13)C18—C19—C20120.58 (16)
C12—C7—Sn121.74 (10)C18—C19—H19A119.7
C8—C7—Sn119.39 (10)C20—C19—H19A119.7
C9—C8—C7120.54 (14)C21—C20—C19120.13 (18)
C9—C8—H8119.7C21—C20—H20119.9
C7—C8—H8119.7C19—C20—H20119.9
C8—C9—C10120.02 (15)C20—C21—C22119.78 (18)
C8—C9—H9120.0C20—C21—H21120.1
C10—C9—H9120.0C22—C21—H21120.1
C9—C10—C11119.95 (14)C23—C22—C21120.17 (18)
C9—C10—H10120.0C23—C22—H22119.9
C11—C10—H10120.0C21—C22—H22119.9
C12—C11—C10119.92 (14)C22—C23—C18120.43 (18)
C12—C11—H11120.0C22—C23—H23119.8
C10—C11—H11120.0C18—C23—H23119.8
C7—Sn—S1—C13−77.41 (6)C12—C7—C8—C9−0.7 (2)
C1—Sn—S1—C1388.60 (7)Sn—C7—C8—C9178.20 (11)
Cl1—Sn—S1—C13−173.74 (5)C7—C8—C9—C100.7 (2)
S2—Sn—S1—C133.88 (4)C8—C9—C10—C110.0 (2)
C7—Sn—S2—C13113.69 (6)C9—C10—C11—C12−0.8 (2)
C1—Sn—S2—C13−127.49 (6)C10—C11—C12—C70.8 (2)
Cl1—Sn—S2—C131.93 (6)C8—C7—C12—C11−0.1 (2)
S1—Sn—S2—C13−4.00 (5)Sn—C7—C12—C11−178.90 (11)
C7—Sn—C1—C691.75 (12)C17—N1—C13—S2−170.93 (10)
Cl1—Sn—C1—C6−165.18 (11)C14—N1—C13—S22.41 (18)
S1—Sn—C1—C6−74.01 (12)C17—N1—C13—S18.53 (17)
S2—Sn—C1—C6−3.45 (12)C14—N1—C13—S1−178.13 (10)
C7—Sn—C1—C2−82.83 (13)Sn—S2—C13—N1−174.56 (12)
Cl1—Sn—C1—C220.24 (12)Sn—S2—C13—S15.98 (7)
S1—Sn—C1—C2111.41 (11)Sn—S1—C13—N1174.08 (11)
S2—Sn—C1—C2−178.04 (11)Sn—S1—C13—S2−6.43 (7)
C6—C1—C2—C3−0.8 (2)C13—N1—C14—C16137.97 (14)
Sn—C1—C2—C3173.88 (12)C17—N1—C14—C16−48.59 (18)
C1—C2—C3—C4−0.2 (3)C13—N1—C14—C15−96.44 (16)
C2—C3—C4—C50.8 (3)C17—N1—C14—C1577.01 (16)
C3—C4—C5—C6−0.3 (3)C13—N1—C17—C18−82.58 (17)
C2—C1—C6—C51.3 (2)C14—N1—C17—C18103.90 (16)
Sn—C1—C6—C5−173.25 (12)N1—C17—C18—C19−7.8 (2)
C4—C5—C6—C1−0.8 (3)N1—C17—C18—C23173.37 (14)
C1—Sn—C7—C12130.17 (12)C23—C18—C19—C202.0 (2)
Cl1—Sn—C7—C1226.46 (12)C17—C18—C19—C20−176.85 (15)
S1—Sn—C7—C12−63.03 (12)C18—C19—C20—C21−0.4 (3)
S2—Sn—C7—C12−131.46 (11)C19—C20—C21—C22−1.2 (3)
C1—Sn—C7—C8−48.66 (13)C20—C21—C22—C231.2 (3)
Cl1—Sn—C7—C8−152.38 (11)C21—C22—C23—C180.4 (3)
S1—Sn—C7—C8118.13 (11)C19—C18—C23—C22−2.0 (3)
S2—Sn—C7—C849.71 (11)C17—C18—C23—C22176.94 (17)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.803.4477 (17)126
C6—H6···S20.952.803.4996 (16)131
C14—H14···S21.002.513.0291 (15)112
C3—H3···Cg1i0.952.923.8002 (18)154
C16—H16c···Cg1ii0.982.813.4512 (18)124

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2203).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd., Yarnton, UK.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tiekink, E. R. T. (2008). Appl. Organomet. Chem.22, 533–550.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography