PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1178–m1179.
Published online 2010 August 28. doi:  10.1107/S1600536810031855
PMCID: PMC3007913

trans-Diaqua­bis­[5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ido-κ2 N 3,O 4]zinc(II)

Abstract

In the title complex, [Zn(C10H6N3O4)2(H2O)2], the ZnII atom is located on a twofold rotation axis and is coordinated by two trans-positioned N,O-bidentate and zwitterionic 5-carb­oxy-4-carboxyl­ato-2-(4-pyridinio)-1H-imidazol-1-ide (H2PIDC) ligands and two water mol­ecules, defining a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework, stabilized by extensive hydrogen-bonding inter­actions involving the coordinated water mol­ecules, uncoordin­ated imidazole N atom, protonated pyridine N and carboxyl­ate O atoms of the H2PIDC ligands.

Related literature

For related structures, see: Li, Liu et al. (2009 [triangle]); Li, Wu et al. (2009 [triangle]). For the preparation of 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarb­oxy­lic acid, see: Sun et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1178-scheme1.jpg

Experimental

Crystal data

  • [Zn(C10H6N3O4)2(H2O)2]
  • M r = 565.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1178-efi1.jpg
  • a = 7.4138 (9) Å
  • b = 20.204 (3) Å
  • c = 13.4778 (17) Å
  • β = 97.008 (1)°
  • V = 2003.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 173 K
  • 0.27 × 0.17 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.754, T max = 0.878
  • 9235 measured reflections
  • 2488 independent reflections
  • 1957 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.090
  • S = 1.04
  • 2488 reflections
  • 178 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031855/jh2196sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031855/jh2196Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20771094, 20671083), the Science and Technology Key Task of Henan Province (0524270061) and the China Postdoctoral Science Foundation (20070410877).

supplementary crystallographic information

Comment

Multifunctional connector 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate acid (H3PIDC), a rigid N-heterocyclic carboxylate, has great potential for coordinative interactions and hydrogen bonding, showing more interesting traits in the construction of MOFs. It can be successively deprotonated to generate various species with different proton numbers, and hence may result in a large diversity of supramolecular architectures. Very recently, we have reported several supramolecular architectures (Li, Wu et al., 2009; Li, Liu et al., 2009) base on ligand 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid. As an extension of our previous investigations, we have isolated a new Zn(II) complex, [Zn(H2PIDC)2(H2O)2], (I), by the reaction of H3PIDC and Zn(II) diacetate under the hydrothermal condition. We report here the single-crystal structure of this complex.

As shown in Fig. 1, the molecule of (I) is a discrete neutral monomer, in which the Zn atom resides on a crystallographic inversion centre and the asymmetric unit contains one-half of the [Zn(H2PIDC)2(H2O)2] formula unit. Each Zn atom is six-coordinated by N2O4 with two chelating rings from two H2PIDC ligands arranged symmetrically in the equatorial plane and two water molecules occupying the apical sites, showing a distorted octahedral geometry (Table 1). In this complex, one carboxyl group and imidazole group are deprotonated and the pyridyl group is protonated, and the ligand bears a formal charge of -1, and the uncoordinated carboxylate atoms O3 and O4 form an intramolecular hydrogen bond (Table 2). All non-H atoms in the imidazole-4,5-dicarboxyl group are nearly coplanar [the mean deviation is 0.075 (3) Å], and the dihedral angle between imidazole group and pyridine group is 11.4 (2) °.

A three-dimensional supramolecular network is constructed via hydrogen-bonding interactions involving the coordinated water molecules, uncoordinated imidazole N atom, protonated pyridine N and carboxylate O atoms of the H2PIDC- ligands (Table 2 and Fig. 2).

Experimental

A mixture of zinc diacetate dihydrate (0.022 g, 0.1 mmol), 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid (0.024 g, 0.1 mmol) (Sun et al., 2006), NaOH (0.004 g, 0.1 mmol) and water (10 ml) was sealed into a Teflon-lined stainless autoclave and heated at 413 K for 3 days, then cooled to room temperature gradually and colourless block crystals of (I) were obtained. Analysis calculated for C20H16ZnN6O10: C 42.46, H 2.85, N 14.85; found: C 42.82, H 2.73, N 14.70.

Refinement

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular of (I), showing the atom-labelling scheme and displacement ellipsoids at the 30% probability level.
Fig. 2.
The crystal packing of (I), showing the three-dimensional hydrogen-bonding network, H atoms have been omited for clarity.

Crystal data

[Zn(C10H6N3O4)2(H2O)2]F(000) = 1152
Mr = 565.76Dx = 1.875 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.4138 (9) Åθ = 2.5–28.3°
b = 20.204 (3) ŵ = 1.31 mm1
c = 13.4778 (17) ÅT = 173 K
β = 97.008 (1)°Block, colorless
V = 2003.7 (4) Å30.27 × 0.17 × 0.10 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer2488 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scanθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)h = −9→9
Tmin = 0.754, Tmax = 0.878k = −26→26
9235 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0453P)2 + 2.1588P] where P = (Fo2 + 2Fc2)/3
2488 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.25000.25000.50000.02158 (12)
O10.1031 (3)0.21527 (11)0.36331 (14)0.0405 (5)
N1−0.0003 (2)0.26283 (8)0.56460 (13)0.0181 (3)
C10.0872 (3)0.37351 (10)0.51444 (16)0.0230 (4)
O20.1956 (2)0.34788 (7)0.46161 (13)0.0296 (4)
N2−0.2095 (2)0.28420 (8)0.67035 (13)0.0204 (4)
C2−0.2007 (3)0.40644 (10)0.68011 (17)0.0239 (4)
O30.0612 (2)0.43586 (7)0.51721 (13)0.0355 (4)
N3−0.2067 (3)0.03644 (9)0.68078 (15)0.0283 (4)
H3−0.2203−0.00560.69530.034*
C3−0.0184 (3)0.32960 (9)0.57348 (15)0.0184 (4)
O4−0.1528 (3)0.46001 (7)0.63823 (14)0.0368 (4)
C4−0.1451 (3)0.34251 (9)0.63948 (15)0.0192 (4)
O5−0.2869 (2)0.40756 (8)0.75300 (12)0.0322 (4)
C5−0.1194 (3)0.23786 (9)0.62332 (15)0.0184 (4)
C6−0.1542 (3)0.16745 (9)0.63892 (15)0.0180 (4)
C7−0.2469 (3)0.14843 (10)0.71861 (17)0.0250 (5)
H7−0.29490.18110.75870.030*
C8−0.2687 (3)0.08256 (11)0.73901 (17)0.0278 (5)
H8−0.32790.06980.79460.033*
C9−0.1247 (3)0.05237 (11)0.60116 (18)0.0311 (5)
H9−0.08660.01840.55970.037*
C10−0.0947 (3)0.11772 (10)0.57857 (17)0.0251 (5)
H10−0.03430.12880.52260.030*
H1B−0.008 (4)0.2148 (13)0.353 (2)0.030*
H1A0.135 (4)0.1903 (13)0.324 (2)0.030*
H4A−0.080 (3)0.4538 (12)0.5916 (16)0.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0248 (2)0.01734 (18)0.0245 (2)0.00358 (13)0.01053 (13)0.00102 (13)
O10.0245 (9)0.0669 (14)0.0305 (10)0.0044 (9)0.0054 (8)−0.0200 (9)
N10.0208 (8)0.0139 (8)0.0206 (8)0.0008 (6)0.0066 (7)0.0011 (6)
C10.0266 (11)0.0175 (10)0.0261 (11)0.0015 (8)0.0088 (9)0.0026 (8)
O20.0361 (9)0.0201 (7)0.0366 (9)0.0046 (7)0.0203 (7)0.0067 (7)
N20.0216 (9)0.0161 (8)0.0250 (9)−0.0002 (7)0.0085 (7)−0.0004 (7)
C20.0263 (11)0.0184 (10)0.0280 (11)0.0016 (8)0.0077 (9)−0.0012 (8)
O30.0493 (11)0.0144 (7)0.0482 (11)0.0022 (7)0.0275 (9)0.0071 (7)
N30.0356 (11)0.0140 (8)0.0359 (11)−0.0042 (7)0.0074 (8)0.0035 (7)
C30.0209 (10)0.0140 (9)0.0212 (10)0.0006 (7)0.0063 (8)0.0004 (7)
O40.0576 (12)0.0155 (7)0.0430 (10)0.0036 (7)0.0291 (9)−0.0001 (7)
C40.0222 (10)0.0144 (9)0.0220 (10)0.0007 (7)0.0062 (8)0.0013 (7)
O50.0417 (10)0.0220 (8)0.0370 (9)0.0018 (7)0.0215 (8)−0.0053 (7)
C50.0204 (10)0.0153 (9)0.0199 (10)−0.0008 (7)0.0045 (8)0.0015 (7)
C60.0186 (10)0.0145 (9)0.0213 (10)−0.0013 (7)0.0034 (8)0.0016 (7)
C70.0309 (12)0.0183 (10)0.0275 (11)−0.0017 (8)0.0101 (9)−0.0008 (8)
C80.0324 (12)0.0239 (11)0.0287 (12)−0.0055 (9)0.0109 (10)0.0054 (9)
C90.0411 (14)0.0190 (10)0.0353 (13)−0.0016 (9)0.0137 (10)−0.0037 (9)
C100.0312 (12)0.0195 (10)0.0266 (11)−0.0023 (8)0.0115 (9)−0.0011 (8)

Geometric parameters (Å, °)

Zn1—O22.0713 (15)C2—O41.290 (3)
Zn1—O2i2.0713 (15)C2—C41.481 (3)
Zn1—O12.1407 (18)N3—C91.336 (3)
Zn1—O1i2.1407 (18)N3—C81.335 (3)
Zn1—N1i2.1592 (17)N3—H30.8800
Zn1—N12.1592 (17)C3—C41.395 (3)
O1—H1B0.82 (3)O4—H4A0.885 (16)
O1—H1A0.78 (3)C5—C61.466 (2)
N1—C51.353 (3)C6—C71.398 (3)
N1—C31.362 (2)C6—C101.397 (3)
C1—O21.249 (3)C7—C81.372 (3)
C1—O31.276 (2)C7—H70.9500
C1—C31.478 (3)C8—H80.9500
N2—C51.352 (3)C9—C101.379 (3)
N2—C41.355 (2)C9—H90.9500
C2—O51.236 (3)C10—H100.9500
O2—Zn1—O2i180.0C9—N3—C8121.80 (19)
O2—Zn1—O192.00 (8)C9—N3—H3119.1
O2i—Zn1—O188.00 (8)C8—N3—H3119.1
O2—Zn1—O1i88.00 (8)N1—C3—C4108.82 (17)
O2i—Zn1—O1i92.00 (8)N1—C3—C1118.85 (17)
O1—Zn1—O1i180.0C4—C3—C1132.32 (18)
O2—Zn1—N1i99.47 (6)C2—O4—H4A114.6 (16)
O2i—Zn1—N1i80.53 (6)N2—C4—C3108.85 (17)
O1—Zn1—N1i89.17 (7)N2—C4—C2121.34 (18)
O1i—Zn1—N1i90.83 (7)C3—C4—C2129.67 (18)
O2—Zn1—N180.53 (6)N1—C5—N2114.27 (17)
O2i—Zn1—N199.47 (6)N1—C5—C6125.79 (18)
O1—Zn1—N190.83 (7)N2—C5—C6119.94 (18)
O1i—Zn1—N189.17 (7)C7—C6—C10117.99 (18)
N1i—Zn1—N1180.0C7—C6—C5119.26 (18)
Zn1—O1—H1B123.2 (19)C10—C6—C5122.73 (18)
Zn1—O1—H1A129 (2)C8—C7—C6120.1 (2)
H1B—O1—H1A105 (3)C8—C7—H7120.0
C5—N1—C3103.85 (16)C6—C7—H7120.0
C5—N1—Zn1147.69 (13)N3—C8—C7120.1 (2)
C3—N1—Zn1104.67 (12)N3—C8—H8119.9
O2—C1—O3122.40 (19)C7—C8—H8119.9
O2—C1—C3118.55 (18)N3—C9—C10120.6 (2)
O3—C1—C3119.02 (18)N3—C9—H9119.7
C1—O2—Zn1111.87 (13)C10—C9—H9119.7
C5—N2—C4104.20 (17)C9—C10—C6119.3 (2)
O5—C2—O4121.93 (19)C9—C10—H10120.4
O5—C2—C4120.28 (19)C6—C10—H10120.4
O4—C2—C4117.77 (19)
O2—Zn1—N1—C5−170.7 (3)N1—C3—C4—N2−1.3 (2)
O2i—Zn1—N1—C59.3 (3)C1—C3—C4—N2177.0 (2)
O1—Zn1—N1—C597.4 (3)N1—C3—C4—C2174.4 (2)
O1i—Zn1—N1—C5−82.6 (3)C1—C3—C4—C2−7.3 (4)
N1i—Zn1—N1—C537 (16)O5—C2—C4—N210.2 (3)
O2—Zn1—N1—C3−19.40 (13)O4—C2—C4—N2−171.3 (2)
O2i—Zn1—N1—C3160.60 (13)O5—C2—C4—C3−165.1 (2)
O1—Zn1—N1—C3−111.28 (14)O4—C2—C4—C313.5 (4)
O1i—Zn1—N1—C368.72 (14)C3—N1—C5—N2−1.2 (2)
N1i—Zn1—N1—C3−171 (100)Zn1—N1—C5—N2150.2 (2)
O3—C1—O2—Zn1166.35 (18)C3—N1—C5—C6179.3 (2)
C3—C1—O2—Zn1−15.4 (3)Zn1—N1—C5—C6−29.3 (4)
O2i—Zn1—O2—C124 (100)C4—N2—C5—N10.4 (2)
O1—Zn1—O2—C1110.06 (17)C4—N2—C5—C6179.97 (19)
O1i—Zn1—O2—C1−69.94 (17)N1—C5—C6—C7164.9 (2)
N1i—Zn1—O2—C1−160.45 (16)N2—C5—C6—C7−14.7 (3)
N1—Zn1—O2—C119.55 (16)N1—C5—C6—C10−13.6 (3)
C5—N1—C3—C41.5 (2)N2—C5—C6—C10166.9 (2)
Zn1—N1—C3—C4−163.20 (14)C10—C6—C7—C83.5 (3)
C5—N1—C3—C1−177.10 (19)C5—C6—C7—C8−175.1 (2)
Zn1—N1—C3—C118.2 (2)C9—N3—C8—C7−0.8 (4)
O2—C1—C3—N1−3.1 (3)C6—C7—C8—N3−2.2 (3)
O3—C1—C3—N1175.2 (2)C8—N3—C9—C102.6 (4)
O2—C1—C3—C4178.8 (2)N3—C9—C10—C6−1.2 (4)
O3—C1—C3—C4−3.0 (4)C7—C6—C10—C9−1.8 (3)
C5—N2—C4—C30.6 (2)C5—C6—C10—C9176.7 (2)
C5—N2—C4—C2−175.55 (19)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···N2ii0.82 (3)2.08 (3)2.898 (3)178 (3)
N3—H3···O5iii0.881.892.755 (2)169.
O4—H4A···O30.89 (2)1.58 (2)2.459 (2)173 (3)

Symmetry codes: (ii) −x−1/2, −y+1/2, −z+1; (iii) −x−1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2196).

References

  • Li, X., Liu, W., Wu, B.-L. & Zhang, H.-Y. (2009). Acta Cryst. E65, m820–m821. [PMC free article] [PubMed]
  • Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des.9, 3423–3431.
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography