PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1052.
Published online 2010 August 4. doi:  10.1107/S1600536810030114
PMCID: PMC3007911

Bis[(2-amino­phen­yl)methanol-κ2 O,N]bis­(nitrato-κO)manganese(II)

Abstract

In the title compound, [Mn(NO3)2(C7H9NO)2], the MnII atom (site symmetry 2) is coordinated by two N,O-bidentate (2-amino­phen­yl)methanol ligands and two monodentate nitrate anions in a distorted cis-MnN2O4 octa­hedral coordination geometry. In the crystal, N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds help to establish the packing.

Related literature

For structures involving the same ligand with other metal ions, see: Bandoli et al. (2002 [triangle]); Lewiriski et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1052-scheme1.jpg

Experimental

Crystal data

  • [Mn(NO3)2(C7H9NO)2]
  • M r = 425.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1052-efi1.jpg
  • a = 23.374 (2) Å
  • b = 10.1929 (12) Å
  • c = 7.3336 (6) Å
  • V = 1747.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 120 K
  • 0.40 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.907, T max = 0.955
  • 6668 measured reflections
  • 2335 independent reflections
  • 1928 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.071
  • S = 1.10
  • 2335 reflections
  • 135 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030114/hb5561sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030114/hb5561Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the University of Urmiyeh for financial support.

supplementary crystallographic information

Comment

(2-Aminophenyl)methanol is a bidentate ligand ligand. There are only two complexes with this ligand that have been prepared: those of Re (Bandoli et al., 2002) and Al (Lewiriski et al. 1998). We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound, Fig. 1, contains half molecule. The MnII atom is six-coordinated in distorted hexagonal configurations by two N and two O atoms from two (2-aminophenyl)methanol ligand and two O atoms from two nitrate anions. The Mn—O and Mn—N bond lengths and angles are collected in Table 1.

Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonding may stabilize the structure, (Table 2, Fig. 2).

Experimental

A solution of (2-aminophenyl)methanol (0.25 g, 2.00 mmol) in methanol (10 ml) was added to a solution of Mn(NO3)2.4H2O (0.25 g, 1.00 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless needles of (I) were isolated (yield 0.33 g, 77.6%).

Refinement

The N- and O-bound H atoms were located in a difference map and freely refined. All C-bound H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms with suffix a are generated by (1–x, y, 1/2–z).
Fig. 2.
Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Mn(NO3)2(C7H9NO)2]F(000) = 876
Mr = 425.26Dx = 1.617 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1154 reflections
a = 23.374 (2) Åθ = 2.2–29.2°
b = 10.1929 (12) ŵ = 0.81 mm1
c = 7.3336 (6) ÅT = 120 K
V = 1747.2 (3) Å3Block, colorless
Z = 40.40 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD diffractometer2335 independent reflections
Radiation source: fine-focus sealed tube1928 reflections with I > 2σ(I)
graphiteRint = 0.046
phi and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −31→23
Tmin = 0.907, Tmax = 0.955k = −13→10
6668 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.017P)2 + 1.3224P] where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max = 0.007
135 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.61659 (7)0.43167 (16)0.1127 (2)0.0177 (3)
H1A0.63800.51320.11580.021*
H1B0.61370.4033−0.01320.021*
C20.64736 (7)0.32879 (16)0.2234 (2)0.0160 (3)
C30.69730 (8)0.36086 (18)0.3180 (2)0.0208 (3)
H30.71190.44550.30950.025*
C40.72554 (8)0.26846 (19)0.4247 (3)0.0248 (4)
H40.75860.29110.48760.030*
C50.70376 (8)0.14206 (19)0.4363 (3)0.0248 (4)
H50.72210.08020.50870.030*
C60.65484 (8)0.10717 (17)0.3408 (2)0.0197 (3)
H60.64110.02170.34730.024*
C70.62624 (7)0.20036 (16)0.2348 (2)0.0162 (3)
N10.57317 (7)0.16868 (14)0.1479 (2)0.0168 (3)
H1D0.5731 (10)0.194 (2)0.030 (4)0.033 (6)*
H1C0.5657 (10)0.085 (2)0.156 (3)0.027 (6)*
N20.55303 (6)0.21326 (14)0.61414 (18)0.0165 (3)
O10.55977 (5)0.45233 (12)0.18714 (17)0.0181 (2)
H1E0.5502 (11)0.522 (3)0.141 (4)0.046 (8)*
O20.53386 (6)0.31604 (10)0.53077 (16)0.0184 (3)
O30.53757 (6)0.10431 (11)0.55841 (18)0.0241 (3)
O40.58609 (6)0.22845 (13)0.74423 (18)0.0249 (3)
Mn10.50000.29131 (3)0.25000.01412 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0222 (8)0.0131 (7)0.0179 (8)−0.0029 (6)0.0022 (7)0.0018 (6)
C20.0186 (7)0.0156 (7)0.0137 (8)0.0016 (6)0.0017 (6)−0.0019 (6)
C30.0197 (8)0.0212 (8)0.0216 (8)−0.0015 (7)0.0024 (7)−0.0055 (7)
C40.0196 (8)0.0306 (10)0.0243 (8)0.0028 (8)−0.0040 (7)−0.0056 (8)
C50.0244 (9)0.0276 (10)0.0224 (8)0.0090 (8)−0.0023 (7)0.0006 (8)
C60.0237 (8)0.0152 (7)0.0203 (8)0.0043 (7)0.0000 (7)−0.0005 (7)
C70.0191 (7)0.0151 (7)0.0143 (7)0.0014 (6)0.0016 (6)−0.0017 (6)
N10.0230 (7)0.0109 (6)0.0165 (7)−0.0018 (5)−0.0026 (6)−0.0005 (5)
N20.0213 (7)0.0139 (6)0.0144 (6)0.0013 (6)0.0004 (5)0.0012 (5)
O10.0204 (6)0.0102 (5)0.0238 (6)−0.0002 (5)−0.0008 (5)0.0045 (5)
O20.0288 (6)0.0087 (5)0.0177 (6)0.0011 (5)−0.0042 (5)0.0014 (4)
O30.0316 (7)0.0103 (5)0.0305 (7)−0.0017 (5)−0.0047 (6)0.0007 (5)
O40.0308 (6)0.0276 (7)0.0163 (6)0.0021 (5)−0.0072 (6)0.0004 (6)
Mn10.01774 (16)0.00979 (14)0.01484 (16)0.000−0.00214 (14)0.000

Geometric parameters (Å, °)

C1—O11.451 (2)C7—N11.431 (2)
C1—C21.509 (2)Mn1—N12.2469 (15)
C1—H1A0.9700N1—H1D0.90 (3)
C1—H1B0.9700N1—H1C0.87 (2)
C2—C31.397 (2)N2—O31.2372 (19)
C2—C71.402 (2)N2—O41.2375 (18)
C3—C41.391 (3)N2—O21.2931 (18)
C3—H30.9300Mn1—O12.2041 (13)
C4—C51.388 (3)O1—H1E0.82 (3)
C4—H40.9300Mn1—O22.2203 (12)
C5—C61.387 (3)Mn1—O1i2.2041 (13)
C5—H50.9300Mn1—O2i2.2202 (12)
C6—C71.398 (2)Mn1—N1i2.2469 (15)
C6—H60.9300
O1—C1—C2109.56 (13)Mn1—N1—H1D99.2 (16)
O1—C1—H1A109.8C7—N1—H1C111.3 (15)
C2—C1—H1A109.8Mn1—N1—H1C111.6 (15)
O1—C1—H1B109.8H1D—N1—H1C110 (2)
C2—C1—H1B109.8O3—N2—O4123.32 (14)
H1A—C1—H1B108.2O3—N2—O2118.03 (13)
C3—C2—C7118.92 (15)O4—N2—O2118.65 (14)
C3—C2—C1120.20 (15)C1—O1—Mn1123.42 (10)
C7—C2—C1120.88 (15)C1—O1—H1E102.7 (19)
C4—C3—C2121.16 (17)Mn1—O1—H1E124.1 (19)
C4—C3—H3119.4N2—O2—Mn1118.03 (10)
C2—C3—H3119.4O1i—Mn1—O183.74 (7)
C5—C4—C3119.26 (17)O1i—Mn1—O2i83.31 (5)
C5—C4—H4120.4O1—Mn1—O2i86.99 (5)
C3—C4—H4120.4O1i—Mn1—O286.99 (5)
C6—C5—C4120.63 (17)O1—Mn1—O283.31 (5)
C6—C5—H5119.7O2i—Mn1—O2166.96 (6)
C4—C5—H5119.7O1i—Mn1—N1i82.07 (5)
C5—C6—C7120.05 (17)O1—Mn1—N1i165.12 (5)
C5—C6—H6120.0O2i—Mn1—N1i95.79 (5)
C7—C6—H6120.0O2—Mn1—N1i91.45 (5)
C6—C7—C2119.96 (15)O1i—Mn1—N1165.11 (5)
C6—C7—N1120.58 (15)O1—Mn1—N182.07 (5)
C2—C7—N1119.31 (14)O2i—Mn1—N191.45 (5)
C7—N1—Mn1112.68 (10)O2—Mn1—N195.79 (5)
C7—N1—H1D111.3 (16)N1i—Mn1—N1112.40 (8)
O1—C1—C2—C3−117.48 (17)O4—N2—O2—Mn1159.69 (11)
O1—C1—C2—C761.89 (19)C1—O1—Mn1—O1i−175.17 (15)
C7—C2—C3—C4−1.1 (3)C1—O1—Mn1—O2i−91.58 (12)
C1—C2—C3—C4178.31 (16)C1—O1—Mn1—O297.15 (12)
C2—C3—C4—C50.4 (3)C1—O1—Mn1—N1i167.15 (17)
C3—C4—C5—C60.9 (3)C1—O1—Mn1—N10.31 (12)
C4—C5—C6—C7−1.4 (3)N2—O2—Mn1—O1i148.15 (12)
C5—C6—C7—C20.7 (2)N2—O2—Mn1—O1−127.80 (12)
C5—C6—C7—N1−174.78 (16)N2—O2—Mn1—O2i−169.96 (11)
C3—C2—C7—C60.5 (2)N2—O2—Mn1—N1i66.17 (12)
C1—C2—C7—C6−178.84 (15)N2—O2—Mn1—N1−46.52 (12)
C3—C2—C7—N1176.07 (15)C7—N1—Mn1—O1i69.1 (2)
C1—C2—C7—N1−3.3 (2)C7—N1—Mn1—O151.34 (11)
C6—C7—N1—Mn1117.00 (14)C7—N1—Mn1—O2i138.10 (11)
C2—C7—N1—Mn1−58.50 (17)C7—N1—Mn1—O2−31.05 (12)
C2—C1—O1—Mn1−49.35 (17)C7—N1—Mn1—N1i−125.03 (12)
O3—N2—O2—Mn1−19.78 (18)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O3ii0.87 (2)2.16 (2)2.9775 (19)156 (2)
N1—H1D···O4iii0.90 (3)2.15 (3)3.037 (2)169 (2)
O1—H1E···O2iv0.82 (3)1.88 (3)2.6937 (17)176 (3)
C1—H1B···O4iii0.972.603.479 (2)151

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, y, z−1; (iv) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5561).

References

  • Bandoli, G., Dolmella, A., Gerber, T. I. A., Mpinda, D., Perils, J. & Preez, J. G. H. (2002). J. Coord. Chem.55, 823–833.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS, Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lewiriski, J., Zachara, J. & Kopec, T. (1998). Inorg. Chem. Commun. pp. 182–l84.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography