PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1051.
Published online 2010 August 4. doi:  10.1107/S1600536810030126
PMCID: PMC3007907

Oxido{N-[(2-oxido-1-naphthyl-κO)methyl­idene]asparaginato-κ2 O 1,N 2}(1,10-phenanthroline-κ2 N,N′)vanadium(IV) N,N-dimethyl­formamide monosolvate

Abstract

The tridentate Schiff base ligand of the title complex, [V(C15H12N2O4)O(C12H8N2)]·C3H7NO, was derived from the condensation of 2-hy­droxy-1-naphthaldehyde and l-asparagine. The central VIV atom is six-coordinated by one oxide O atom, two N atoms from 1,10-phenanthroline and one N atom and two O atoms from the Schiff base ligand in a distorted octa­hedral geometry. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds connect mol­ecules into centrosymmetric dimers. The C atoms of the dimethyl­formamide solvent mol­ecule are disordered over two sites with site-occupancy factors of 0.732 (13) and 0.268 (13).

Related literature

For the insulin-mimetic properties of vanadium compounds, see: Diego et al. (2003 [triangle]); Kenji et al. (2000 [triangle]); Thompson & Orvig (2006 [triangle]). For related structures, see: Hoshina et al. (1998 [triangle]); Otieno et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1051-scheme1.jpg

Experimental

Crystal data

  • [V(C15H12N2O4)O(C12H8N2)]·C3H7NO
  • M r = 604.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1051-efi1.jpg
  • a = 10.357 (1) Å
  • b = 11.1021 (12) Å
  • c = 12.9119 (14) Å
  • α = 101.396 (2)°
  • β = 104.196 (2)°
  • γ = 91.010 (1)°
  • V = 1407.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 298 K
  • 0.36 × 0.31 × 0.25 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.868, T max = 0.905
  • 7387 measured reflections
  • 4892 independent reflections
  • 3123 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075
  • wR(F 2) = 0.216
  • S = 1.00
  • 4892 reflections
  • 411 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1996 [triangle]); cell refinement: SAINT (Bruker, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030126/pv2309sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030126/pv2309Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

supplementary crystallographic information

Comment

Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. The coordination chemistry of oxovanadium (IV) has gained a great interest due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Kenji, et al., 2000; Diego et al., 2003; Thompson & Orvig, 2006). We report here the synthesis and crystal structure of the title complex.

In the molecular structure of the title compound (Fig. 1), the tridentate Schiff base ligand is derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-asparagine. The central VIV atom is six-coordinated by one oxide O atom, two N atoms from 1,10-phenanthroline and one N atom and two O atoms from the schiff base ligand in a distorted octahedral geometry. The V═O bond distance is 1.587 (3)Å which is typical for oxovandium complexes (Hoshina et al., 1998; Otieno et al., 1996). The Schiff base with the vanadium atom has formed a five-member ring (O1/C1–2/N2/V1) and a six-member ring (N2/C5–7/O4/V1], and the two rings have the dihedral angle 20.89 (17)°, which increases the stability of the complex. Furthermore, the 1,10–phenanthroline ligand is almost perpendicular to the equatorial plane [dihedral angle 84.98 (8)°].

In the crystal structure, the intermolecular N—H···O hydrogen bonds (Table 1) connect molecules into centrosymmetric dimers (Fig. 2). The solvate molecules are also hydrogen bonded to the Schiff base ligand. The structure is stablilized by inter- and intra-molecular hydrogen bonds of the type C—H···O.

Experimental

L-Asparagine (1 mmol, 150.1 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (5 ml) with stirring and added successively to a methanol solution (5 ml) of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.2 mg). The mixture was stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 225.4 mg) was added dropwise and stirred for 2 h continuously. 1,10-Phenanthroline (1 mmol, 198.2 mg) was then added to the stirring mixture and further refluxed for 4 h and then filtered. The precipitate was dissolved in N,N-dimethylformamide (10 ml) and held at room temperature for several days, whereupon brown blocky crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.98 Å, and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The C-atoms of the N,N-dimethylformamide solvate were disordered over two sites with site occupancy factors 0.732 (13) and 0.268 (13).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The smaller fraction of the disordered C-atoms of the solvate have been joined by hollow bonds.
Fig. 2.
Hydrogen bonding interactions in the title compound shown as dashed lines.

Crystal data

[V(C15H12N2O4)O(C12H8N2)]·C3H7NOZ = 2
Mr = 604.51F(000) = 626
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.357 (1) ÅCell parameters from 1024 reflections
b = 11.1021 (12) Åθ = 2.2–24.7°
c = 12.9119 (14) ŵ = 0.41 mm1
α = 101.396 (2)°T = 298 K
β = 104.196 (2)°Block, brown
γ = 91.010 (1)°0.36 × 0.31 × 0.25 mm
V = 1407.5 (3) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer4892 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→12
Tmin = 0.868, Tmax = 0.905k = −13→13
7387 measured reflectionsl = −13→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.13P)2] where P = (Fo2 + 2Fc2)/3
4892 reflections(Δ/σ)max = 0.001
411 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
V10.21794 (8)0.72939 (7)0.12980 (6)0.0417 (3)
N1−0.0395 (4)0.8528 (4)0.4060 (3)0.0547 (11)
H1A−0.02350.88420.47470.066*
H1B−0.06200.77550.38240.066*
N20.1611 (3)0.9001 (3)0.1906 (3)0.0381 (8)
N30.2777 (3)0.5734 (3)0.0261 (3)0.0402 (9)
N40.2988 (4)0.8051 (3)−0.0030 (3)0.0435 (9)
N50.0667 (5)0.5958 (5)0.6803 (4)0.0717 (13)
O10.0481 (3)0.7362 (3)0.0169 (3)0.0495 (8)
O2−0.1224 (3)0.8505 (3)−0.0363 (3)0.0579 (9)
O30.0023 (4)1.0347 (3)0.3643 (3)0.0595 (10)
O40.4011 (3)0.7907 (3)0.2145 (2)0.0446 (8)
O50.1758 (3)0.6444 (3)0.2031 (3)0.0547 (9)
O60.1289 (5)0.4015 (4)0.6468 (5)0.1162 (19)
C1−0.0249 (5)0.8286 (4)0.0315 (4)0.0453 (11)
C20.0166 (4)0.9110 (4)0.1475 (3)0.0392 (10)
H2−0.00250.99680.14560.047*
C3−0.0627 (5)0.8583 (4)0.2161 (4)0.0459 (11)
H3A−0.15720.86300.18440.055*
H3B−0.04620.77200.21200.055*
C4−0.0294 (4)0.9237 (4)0.3364 (4)0.0438 (11)
C50.2340 (4)0.9935 (4)0.2540 (4)0.0384 (10)
H50.19171.06600.26750.046*
C60.3739 (4)0.9979 (4)0.3061 (3)0.0393 (10)
C70.4499 (4)0.8934 (4)0.2841 (3)0.0390 (10)
C80.5882 (5)0.9024 (4)0.3411 (4)0.0466 (11)
H80.63860.83530.32770.056*
C90.6482 (5)1.0049 (5)0.4137 (4)0.0494 (12)
H90.73831.00600.44870.059*
C100.5767 (5)1.1125 (4)0.4385 (4)0.0447 (11)
C110.4386 (5)1.1087 (4)0.3848 (4)0.0431 (11)
C120.3706 (5)1.2158 (4)0.4134 (4)0.0549 (13)
H120.28021.21730.38040.066*
C130.4364 (6)1.3169 (5)0.4890 (4)0.0613 (14)
H130.38921.38540.50610.074*
C140.5722 (6)1.3197 (5)0.5408 (4)0.0623 (14)
H140.61521.38940.59100.075*
C150.6402 (5)1.2186 (5)0.5165 (4)0.0546 (13)
H150.73011.21900.55170.065*
C160.2636 (5)0.4573 (4)0.0400 (4)0.0464 (11)
H160.22340.44350.09400.056*
C170.3071 (5)0.3567 (4)−0.0233 (4)0.0538 (13)
H170.29670.2778−0.01090.065*
C180.3653 (5)0.3757 (5)−0.1039 (4)0.0540 (13)
H180.39620.3096−0.14530.065*
C190.3785 (4)0.4939 (4)−0.1242 (4)0.0472 (12)
C200.3325 (4)0.5912 (4)−0.0556 (4)0.0416 (11)
C210.3453 (4)0.7150 (4)−0.0716 (4)0.0424 (11)
C220.4021 (5)0.7404 (5)−0.1544 (4)0.0532 (12)
C230.4084 (5)0.8629 (5)−0.1670 (4)0.0618 (14)
H230.44420.8831−0.22120.074*
C240.3612 (5)0.9528 (5)−0.0986 (4)0.0632 (14)
H240.36591.0345−0.10550.076*
C250.3058 (5)0.9198 (4)−0.0182 (4)0.0516 (12)
H250.27250.98110.02640.062*
C260.4361 (5)0.5229 (5)−0.2071 (4)0.0609 (14)
H260.46710.4599−0.25180.073*
C270.4466 (5)0.6385 (6)−0.2220 (4)0.0629 (15)
H270.48360.6534−0.27750.076*
C280.0719 (10)0.4856 (9)0.7005 (9)0.078 (3)0.732 (13)
H280.03420.46720.75430.094*0.732 (13)
C290.1211 (12)0.6333 (11)0.5983 (8)0.102 (4)0.732 (13)
H29A0.18690.57820.58120.153*0.732 (13)
H29B0.16200.71550.62530.153*0.732 (13)
H29C0.05080.63130.53360.153*0.732 (13)
C300.0016 (13)0.6932 (11)0.7444 (10)0.116 (5)0.732 (13)
H30A−0.03150.65920.79650.174*0.732 (13)
H30B−0.07110.72200.69560.174*0.732 (13)
H30C0.06590.76080.78220.174*0.732 (13)
C28'0.140 (3)0.508 (2)0.619 (2)0.085 (9)0.268 (13)
H28'0.18630.52440.56940.102*0.268 (13)
C29'−0.006 (3)0.544 (3)0.737 (3)0.103 (11)0.268 (13)
H29D−0.09190.51310.69040.155*0.268 (13)
H29E−0.01750.60580.79770.155*0.268 (13)
H29F0.04010.47830.76460.155*0.268 (13)
C30'0.058 (3)0.710 (3)0.657 (3)0.107 (11)0.268 (13)
H30D0.01920.70280.58020.161*0.268 (13)
H30E0.14570.75080.67640.161*0.268 (13)
H30F0.00310.75680.69770.161*0.268 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0477 (5)0.0351 (5)0.0436 (5)0.0085 (3)0.0187 (4)0.0015 (3)
N10.077 (3)0.040 (2)0.047 (2)0.008 (2)0.021 (2)0.002 (2)
N20.037 (2)0.040 (2)0.0375 (19)0.0059 (16)0.0129 (16)0.0021 (17)
N30.038 (2)0.037 (2)0.046 (2)0.0058 (15)0.0151 (17)0.0051 (17)
N40.046 (2)0.040 (2)0.046 (2)0.0086 (16)0.0131 (18)0.0085 (18)
N50.083 (4)0.059 (3)0.072 (3)0.007 (3)0.015 (3)0.017 (3)
O10.046 (2)0.0448 (18)0.0514 (18)0.0068 (14)0.0150 (15)−0.0074 (16)
O20.051 (2)0.066 (2)0.0485 (19)0.0130 (17)0.0027 (17)0.0049 (18)
O30.085 (3)0.042 (2)0.054 (2)0.0017 (17)0.0326 (19)−0.0018 (17)
O40.0460 (19)0.0415 (18)0.0442 (17)0.0115 (14)0.0158 (15)−0.0021 (15)
O50.066 (2)0.0460 (19)0.056 (2)0.0083 (15)0.0253 (18)0.0080 (16)
O60.129 (5)0.050 (3)0.145 (5)0.005 (3)−0.002 (4)0.009 (3)
C10.050 (3)0.042 (3)0.046 (3)0.002 (2)0.018 (2)0.006 (2)
C20.037 (3)0.038 (2)0.043 (2)0.0082 (18)0.013 (2)0.004 (2)
C30.047 (3)0.046 (3)0.046 (3)0.006 (2)0.019 (2)0.003 (2)
C40.044 (3)0.045 (3)0.042 (3)0.010 (2)0.018 (2)0.000 (2)
C50.044 (3)0.033 (2)0.045 (2)0.0075 (19)0.022 (2)0.009 (2)
C60.042 (3)0.040 (2)0.039 (2)0.0059 (19)0.015 (2)0.011 (2)
C70.042 (3)0.044 (3)0.036 (2)0.0063 (19)0.017 (2)0.010 (2)
C80.046 (3)0.051 (3)0.045 (3)0.012 (2)0.016 (2)0.009 (2)
C90.045 (3)0.057 (3)0.048 (3)0.010 (2)0.015 (2)0.014 (3)
C100.046 (3)0.049 (3)0.042 (2)−0.002 (2)0.016 (2)0.011 (2)
C110.048 (3)0.041 (3)0.043 (2)0.003 (2)0.018 (2)0.006 (2)
C120.058 (3)0.045 (3)0.054 (3)0.004 (2)0.009 (3)−0.002 (2)
C130.074 (4)0.039 (3)0.065 (3)0.001 (2)0.017 (3)−0.002 (3)
C140.071 (4)0.051 (3)0.057 (3)−0.013 (3)0.013 (3)−0.004 (3)
C150.054 (3)0.055 (3)0.051 (3)−0.009 (2)0.012 (2)0.005 (3)
C160.046 (3)0.034 (2)0.058 (3)0.0005 (19)0.015 (2)0.003 (2)
C170.048 (3)0.038 (3)0.065 (3)0.001 (2)0.007 (3)−0.004 (2)
C180.049 (3)0.049 (3)0.053 (3)0.010 (2)0.009 (2)−0.013 (2)
C190.040 (3)0.052 (3)0.042 (3)0.008 (2)0.008 (2)−0.005 (2)
C200.039 (3)0.044 (3)0.039 (2)0.008 (2)0.010 (2)0.002 (2)
C210.040 (3)0.048 (3)0.038 (2)0.008 (2)0.008 (2)0.008 (2)
C220.051 (3)0.066 (3)0.045 (3)0.009 (2)0.015 (2)0.012 (3)
C230.068 (4)0.075 (4)0.053 (3)0.005 (3)0.024 (3)0.027 (3)
C240.073 (4)0.059 (3)0.067 (3)0.010 (3)0.023 (3)0.028 (3)
C250.055 (3)0.044 (3)0.058 (3)0.008 (2)0.014 (3)0.013 (2)
C260.056 (3)0.073 (4)0.048 (3)0.015 (3)0.017 (3)−0.005 (3)
C270.064 (4)0.083 (4)0.045 (3)0.011 (3)0.025 (3)0.006 (3)
C280.075 (7)0.063 (6)0.091 (7)−0.004 (5)0.009 (5)0.022 (6)
C290.131 (10)0.096 (9)0.083 (7)0.000 (7)0.017 (7)0.043 (7)
C300.141 (10)0.096 (8)0.099 (8)0.062 (7)0.021 (7)0.001 (7)
C28'0.10 (2)0.065 (17)0.095 (19)0.000 (13)0.022 (16)0.020 (15)
C29'0.11 (3)0.10 (2)0.11 (2)0.001 (19)0.04 (2)0.017 (19)
C30'0.11 (2)0.09 (2)0.12 (3)0.012 (17)0.02 (2)0.02 (2)

Geometric parameters (Å, °)

V1—O51.587 (3)C10—C111.424 (6)
V1—O41.975 (3)C11—C121.424 (7)
V1—O12.004 (3)C12—C131.375 (7)
V1—N22.057 (3)C12—H120.9300
V1—N32.168 (3)C13—C141.398 (7)
V1—N42.366 (4)C13—H130.9300
N1—C41.326 (6)C14—C151.361 (7)
N1—H1A0.8600C14—H140.9300
N1—H1B0.8600C15—H150.9300
N2—C51.284 (5)C16—C171.399 (6)
N2—C21.480 (5)C16—H160.9300
N3—C161.346 (5)C17—C181.370 (7)
N3—C201.359 (5)C17—H170.9300
N4—C251.329 (6)C18—C191.398 (7)
N4—C211.376 (6)C18—H180.9300
N5—C281.299 (10)C19—C201.423 (6)
N5—C30'1.36 (3)C19—C261.432 (7)
N5—C29'1.36 (3)C20—C211.438 (6)
N5—C291.439 (11)C21—C221.410 (6)
N5—C28'1.48 (3)C22—C231.403 (7)
N5—C301.503 (11)C22—C271.443 (7)
O1—C11.297 (5)C23—C241.377 (7)
O2—C11.226 (6)C23—H230.9300
O3—C41.228 (5)C24—C251.406 (7)
O4—C71.310 (5)C24—H240.9300
O6—C281.290 (12)C25—H250.9300
O6—C28'1.31 (3)C26—C271.342 (8)
C1—C21.547 (6)C26—H260.9300
C2—C31.531 (6)C27—H270.9300
C2—H20.9800C28—H280.9300
C3—C41.530 (6)C29—H29A0.9600
C3—H3A0.9700C29—H29B0.9600
C3—H3B0.9700C29—H29C0.9600
C5—C61.436 (6)C30—H30A0.9600
C5—H50.9300C30—H30B0.9600
C6—C71.435 (6)C30—H30C0.9600
C6—C111.462 (6)C28'—H28'0.9300
C7—C81.432 (6)C29'—H29D0.9600
C8—C91.352 (6)C29'—H29E0.9600
C8—H80.9300C29'—H29F0.9600
C9—C101.440 (7)C30'—H30D0.9600
C9—H90.9300C30'—H30E0.9600
C10—C151.419 (6)C30'—H30F0.9600
O5—V1—O4101.87 (16)C15—C10—C11120.5 (4)
O5—V1—O1103.57 (16)C15—C10—C9121.3 (5)
O4—V1—O1153.16 (14)C11—C10—C9118.2 (4)
O5—V1—N2103.66 (15)C10—C11—C12116.6 (4)
O4—V1—N286.43 (13)C10—C11—C6119.8 (4)
O1—V1—N279.44 (13)C12—C11—C6123.6 (4)
O5—V1—N391.99 (15)C13—C12—C11121.0 (5)
O4—V1—N395.45 (12)C13—C12—H12119.5
O1—V1—N392.06 (13)C11—C12—H12119.5
N2—V1—N3163.53 (14)C12—C13—C14121.9 (5)
O5—V1—N4164.43 (15)C12—C13—H13119.1
O4—V1—N479.26 (13)C14—C13—H13119.1
O1—V1—N478.54 (13)C15—C14—C13118.8 (5)
N2—V1—N491.91 (13)C15—C14—H14120.6
N3—V1—N472.46 (13)C13—C14—H14120.6
C4—N1—H1A120.0C14—C15—C10121.3 (5)
C4—N1—H1B120.0C14—C15—H15119.4
H1A—N1—H1B120.0C10—C15—H15119.4
C5—N2—C2119.5 (4)N3—C16—C17122.6 (4)
C5—N2—V1128.8 (3)N3—C16—H16118.7
C2—N2—V1111.7 (2)C17—C16—H16118.7
C16—N3—C20117.8 (4)C18—C17—C16119.3 (5)
C16—N3—V1122.2 (3)C18—C17—H17120.4
C20—N3—V1120.0 (3)C16—C17—H17120.4
C25—N4—C21117.7 (4)C17—C18—C19120.5 (4)
C25—N4—V1129.1 (3)C17—C18—H18119.8
C21—N4—V1113.2 (3)C19—C18—H18119.8
C28—N5—C30'178.4 (15)C18—C19—C20116.8 (4)
C28—N5—C29'52.5 (14)C18—C19—C26124.7 (4)
C30'—N5—C29'127 (2)C20—C19—C26118.6 (5)
C28—N5—C29123.9 (9)N3—C20—C19123.1 (4)
C30'—N5—C2956.0 (15)N3—C20—C21117.7 (4)
C29'—N5—C29166.6 (15)C19—C20—C21119.2 (4)
C28—N5—C28'63.0 (11)N4—C21—C22122.7 (4)
C30'—N5—C28'117.0 (19)N4—C21—C20116.5 (4)
C29'—N5—C28'114.5 (18)C22—C21—C20120.8 (4)
C29—N5—C28'61.0 (11)C23—C22—C21117.7 (5)
C28—N5—C30120.2 (9)C23—C22—C27124.4 (5)
C30'—N5—C3059.9 (16)C21—C22—C27117.9 (5)
C29'—N5—C3069.4 (15)C24—C23—C22119.6 (5)
C29—N5—C30115.9 (9)C24—C23—H23120.2
C28'—N5—C30175.2 (12)C22—C23—H23120.2
C1—O1—V1119.2 (3)C23—C24—C25119.2 (5)
C7—O4—V1132.7 (3)C23—C24—H24120.4
C28—O6—C28'68.3 (13)C25—C24—H24120.4
O2—C1—O1125.4 (4)N4—C25—C24123.1 (5)
O2—C1—C2120.4 (4)N4—C25—H25118.4
O1—C1—C2114.2 (4)C24—C25—H25118.4
N2—C2—C3110.1 (4)C27—C26—C19121.8 (5)
N2—C2—C1107.0 (3)C27—C26—H26119.1
C3—C2—C1106.6 (3)C19—C26—H26119.1
N2—C2—H2111.0C26—C27—C22121.7 (5)
C3—C2—H2111.0C26—C27—H27119.1
C1—C2—H2111.0C22—C27—H27119.1
C4—C3—C2114.5 (4)O6—C28—N5120.8 (9)
C4—C3—H3A108.6O6—C28—H28119.6
C2—C3—H3A108.6N5—C28—H28119.6
C4—C3—H3B108.6N5—C29—H29A109.5
C2—C3—H3B108.6N5—C29—H29B109.5
H3A—C3—H3B107.6N5—C29—H29C109.5
O3—C4—N1123.5 (4)N5—C30—H30A109.5
O3—C4—C3121.1 (4)N5—C30—H30B109.5
N1—C4—C3115.4 (4)N5—C30—H30C109.5
N2—C5—C6126.9 (4)O6—C28'—N5107.7 (19)
N2—C5—H5116.6O6—C28'—H28'126.1
C6—C5—H5116.6N5—C28'—H28'126.1
C7—C6—C5120.7 (4)N5—C29'—H29D109.5
C7—C6—C11119.7 (4)N5—C29'—H29E109.5
C5—C6—C11119.6 (4)H29D—C29'—H29E109.5
O4—C7—C8118.0 (4)N5—C29'—H29F109.5
O4—C7—C6124.1 (4)H29D—C29'—H29F109.5
C8—C7—C6117.9 (4)H29E—C29'—H29F109.5
C9—C8—C7122.5 (4)N5—C30'—H30D109.5
C9—C8—H8118.8N5—C30'—H30E109.5
C7—C8—H8118.8H30D—C30'—H30E109.5
C8—C9—C10121.9 (5)N5—C30'—H30F109.5
C8—C9—H9119.1H30D—C30'—H30F109.5
C10—C9—H9119.1H30E—C30'—H30F109.5
O5—V1—N2—C5102.7 (4)C7—C8—C9—C10−0.1 (7)
O4—V1—N2—C51.4 (4)C8—C9—C10—C15178.7 (4)
O1—V1—N2—C5−155.7 (4)C8—C9—C10—C110.6 (7)
N3—V1—N2—C5−95.8 (6)C15—C10—C11—C120.4 (6)
N4—V1—N2—C5−77.7 (4)C9—C10—C11—C12178.5 (4)
O5—V1—N2—C2−80.4 (3)C15—C10—C11—C6−178.9 (4)
O4—V1—N2—C2178.3 (3)C9—C10—C11—C6−0.7 (6)
O1—V1—N2—C221.2 (3)C7—C6—C11—C100.4 (6)
N3—V1—N2—C281.1 (5)C5—C6—C11—C10178.7 (4)
N4—V1—N2—C299.2 (3)C7—C6—C11—C12−178.7 (4)
O5—V1—N3—C162.5 (4)C5—C6—C11—C12−0.5 (6)
O4—V1—N3—C16104.7 (3)C10—C11—C12—C130.1 (7)
O1—V1—N3—C16−101.1 (4)C6—C11—C12—C13179.3 (4)
N2—V1—N3—C16−159.5 (4)C11—C12—C13—C140.1 (8)
N4—V1—N3—C16−178.4 (4)C12—C13—C14—C15−0.8 (8)
O5—V1—N3—C20−176.8 (3)C13—C14—C15—C101.3 (7)
O4—V1—N3—C20−74.7 (3)C11—C10—C15—C14−1.1 (7)
O1—V1—N3—C2079.5 (3)C9—C10—C15—C14−179.2 (5)
N2—V1—N3—C2021.2 (7)C20—N3—C16—C172.2 (7)
N4—V1—N3—C202.2 (3)V1—N3—C16—C17−177.2 (3)
O5—V1—N4—C25−178.2 (6)N3—C16—C17—C18−0.7 (7)
O4—V1—N4—C25−82.5 (4)C16—C17—C18—C19−1.4 (7)
O1—V1—N4—C2582.3 (4)C17—C18—C19—C201.7 (7)
N2—V1—N4—C253.5 (4)C17—C18—C19—C26−179.2 (4)
N3—V1—N4—C25178.2 (4)C16—N3—C20—C19−1.8 (6)
O5—V1—N4—C211.1 (8)V1—N3—C20—C19177.6 (3)
O4—V1—N4—C2196.8 (3)C16—N3—C20—C21178.9 (4)
O1—V1—N4—C21−98.4 (3)V1—N3—C20—C21−1.7 (5)
N2—V1—N4—C21−177.2 (3)C18—C19—C20—N3−0.1 (7)
N3—V1—N4—C21−2.5 (3)C26—C19—C20—N3−179.3 (4)
O5—V1—O1—C196.2 (3)C18—C19—C20—C21179.1 (4)
O4—V1—O1—C1−64.9 (4)C26—C19—C20—C210.0 (7)
N2—V1—O1—C1−5.5 (3)C25—N4—C21—C221.6 (6)
N3—V1—O1—C1−171.3 (3)V1—N4—C21—C22−177.8 (3)
N4—V1—O1—C1−99.6 (3)C25—N4—C21—C20−178.0 (4)
O5—V1—O4—C7−97.9 (4)V1—N4—C21—C202.6 (5)
O1—V1—O4—C763.3 (5)N3—C20—C21—N4−0.8 (6)
N2—V1—O4—C75.3 (4)C19—C20—C21—N4179.9 (4)
N3—V1—O4—C7168.9 (4)N3—C20—C21—C22179.6 (4)
N4—V1—O4—C798.0 (4)C19—C20—C21—C220.3 (7)
V1—O1—C1—O2171.5 (4)N4—C21—C22—C23−1.1 (7)
V1—O1—C1—C2−11.2 (5)C20—C21—C22—C23178.5 (4)
C5—N2—C2—C3−98.3 (4)N4—C21—C22—C27−179.6 (4)
V1—N2—C2—C384.5 (3)C20—C21—C22—C270.0 (7)
C5—N2—C2—C1146.2 (4)C21—C22—C23—C240.7 (8)
V1—N2—C2—C1−31.0 (4)C27—C22—C23—C24179.1 (5)
O2—C1—C2—N2−155.0 (4)C22—C23—C24—C25−0.9 (8)
O1—C1—C2—N227.5 (5)C21—N4—C25—C24−1.7 (7)
O2—C1—C2—C387.2 (5)V1—N4—C25—C24177.6 (4)
O1—C1—C2—C3−90.3 (4)C23—C24—C25—N41.4 (8)
N2—C2—C3—C461.0 (5)C18—C19—C26—C27−179.6 (5)
C1—C2—C3—C4176.7 (4)C20—C19—C26—C27−0.5 (7)
C2—C3—C4—O333.3 (6)C19—C26—C27—C220.9 (8)
C2—C3—C4—N1−147.8 (4)C23—C22—C27—C26−178.9 (5)
C2—N2—C5—C6177.5 (4)C21—C22—C27—C26−0.6 (8)
V1—N2—C5—C6−5.9 (6)C28'—O6—C28—N53.5 (14)
N2—C5—C6—C74.5 (6)C29'—N5—C28—O6165 (2)
N2—C5—C6—C11−173.8 (4)C29—N5—C28—O60.5 (13)
V1—O4—C7—C8172.9 (3)C28'—N5—C28—O6−3.2 (13)
V1—O4—C7—C6−7.7 (6)C30—N5—C28—O6−179.2 (8)
C5—C6—C7—O42.3 (6)C28—O6—C28'—N5−2.8 (11)
C11—C6—C7—O4−179.4 (4)C28—N5—C28'—O62.9 (11)
C5—C6—C7—C8−178.3 (4)C30'—N5—C28'—O6−175.3 (18)
C11—C6—C7—C80.0 (6)C29'—N5—C28'—O6−8(2)
O4—C7—C8—C9179.3 (4)C29—N5—C28'—O6−174 (2)
C6—C7—C8—C9−0.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.052.909 (5)175
N1—H1B···O6ii0.862.002.852 (6)169
C16—H16···O50.932.522.975 (5)111
C29—H29A···O60.962.412.764 (11)102
C29—H29C···O6ii0.962.563.511 (12)173
C25—H25···O2iii0.932.463.275 (6)147
C17—H17···O2iv0.932.543.288 (6)138

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x, −y+2, −z; (iv) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2309).

References

  • Bruker (1996). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813–1820.
  • Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem.37, 142–145. [PubMed]
  • Kenji, K., Makoto, T., Ken, H., Naohisa, Y. & Yoshitane, K. (2000). Inorg. Chim. Acta, 305, 172–183.
  • Otieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37–38.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761–764. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography