PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1092–m1093.
Published online 2010 August 18. doi:  10.1107/S160053681003151X
PMCID: PMC3007904

catena-Poly[sodium [[tris(3-methyl­pyridine-2-carboxylato)europate(III)]-μ-3-methylpyridine-2-carboxylato] trihydrate]

Abstract

In the title structure, {Na[Eu(C7H6NO2)4]·3H2O}n, the EuIII atom is nine-coordin­ated within a slightly distorted tricapped trigonal-prismatic coordination geometry defined by five carboxyl­ate-O atoms and four pyridine-N atoms. One of the carboxyl­ate ligands bridges the Eu cations, forming a one-dimensional coordination polymer along the b axis. The Eu—O bond distances lie within the range 2.362 (4)–2.461 (4) Å. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the polymers into a three-dimensional network.

Related literature

For general background to pyridine carb­oxy­lic complexes, see: Seo et al. (2010 [triangle]); Kukovec et al. (2009 [triangle]); Hong et al. (2008 [triangle]); Soares-Santos et al. (2006 [triangle]). For the syntheses and structures of Eu complexes, see: Lis et al. (2009 [triangle]); Godlewska et al. (2008 [triangle]); Legendziewicz et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1092-scheme1.jpg

Experimental

Crystal data

  • Na[Eu(C7H6NO2)4]·3H2O
  • M r = 773.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1092-efi4.jpg
  • a = 11.721 (3) Å
  • b = 12.615 (4) Å
  • c = 21.133 (6) Å
  • β = 96.585 (7)°
  • V = 3104.1 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.10 mm−1
  • T = 233 K
  • 0.22 × 0.15 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.583, T max = 0.741
  • 25592 measured reflections
  • 5782 independent reflections
  • 4104 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.148
  • S = 1.05
  • 5782 reflections
  • 428 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.77 e Å−3
  • Δρmin = −1.63 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2010 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003151X/tk2695sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003151X/tk2695Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray data were collected at the Center for Research Facilities at Chungnam National University.

supplementary crystallographic information

Comment

Metal complexes of picolinic acid and their derivatives have been of considerable interest due to their adoption of various coordination modes and their interesting photophysical properties (Seo et al., 2010; Kukovec et al., 2009; Hong et al., 2008; Soares-Santos et al., 2006). Especially, Eu(III) complexes have been extensively studied due to their unique luminescence properties such as narrow emission bands and the excitation spectra of the five-dimensional0 — > 7F0 transition (Lis et al., 2009; Godlewska et al., 2008; Legendziewicz et al., 2002). In this study, we report the synthesis and characterization of a Eu(III)-picolinic acid derivative in order to develop new lanthanide complexes for novel photoluminescent applications.

In the title one-dimensional coordination polymer, {Na[Eu(C7H6NO2)4] 3H2O}n, the Eu atom is nine-coordinate within a slightly distorted tricapped trigonal prismatic coordination geometry. The Eu(III) atom is coordinated to the five carboxylate-O atoms and four pyridine-N atoms. The Eu—O bond distances are within the range of 2.362 (4) - 2.461 (4) Å, Table 1, which are significantly shorter than the sum of the covalent radii of Eu and O atoms (2.66 Å). The dihedral angles between the pyridine rings and the carboxylate groups are in the range of 5.0 (4) - 24.7 (4) °. One of the carboxylate ligands bridges Eu cations to form a one-dimensional coordination polymer along the crystallographic b axis (Fig. 2). Intramolecular O—H···O hydrogen bonds link the uncoordinated water molecules to the coordinated water molecules, Table 2. In the crystal structure, intermolecular O—H···O hydrogen bonds link the polymers into a three-dimensional network, Table 2. The title compound exhibits an intense emission at 618 nm upon 396 nm excitation in PL spectra with 325 nm of He—Cd laser excitation wavelength.

Experimental

Europium trichloride solution was prepared by dissolving EuCl3 6H2O (0.37 g, 1.0 mmol; Aldrich) in absolute ethanol (20 ml) at room temperature with stirring. The ligand solution was prepared by dissolving 3-methylpicolinic acid (0.55 g, 4.0 mmol; Aldrich) in absolute ethanol (30 ml) at room temperature. The pH of the ligand solution was adjusted to about 6 with 2 N NaOH solution. The Eu solution was added drop wise and slowly to the ligand solution. The reaction mixture was stirred for 2 h at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks. The complex was recrystallized from distilled water.

Refinement

The water-H atoms were located in a difference Fourier map and refined with O—H = 0.82±0.01 Å. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 - 0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic-H and 1.5Ueq(C) for methyl-H atoms. The maximum and minimum residual electron density peaks of 1.77 and -1.63 eÅ-3, respectively, were located 1.55 Å and 0.79 Å from the O39 and Eu1 atoms, respectively.

Figures

Fig. 1.
Molecular structure of the title complex showing the atom-numbering scheme and 50% probability ellipsoids. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 3/2, y - 1/2, -z + 1/2]
Fig. 2.
One-dimensional supramolecular chain along the b axis. H atoms have been omitted for clarity.

Crystal data

Na[Eu(C7H6NO2)4]·3H2OF(000) = 1552
Mr = 773.51Dx = 1.655 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3070 reflections
a = 11.721 (3) Åθ = 2.5–20.6°
b = 12.615 (4) ŵ = 2.10 mm1
c = 21.133 (6) ÅT = 233 K
β = 96.585 (7)°Block, colourless
V = 3104.1 (16) Å30.22 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4104 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.088
Absorption correction: multi-scan (SADABS; Bruker, 2002)θmax = 25.5°, θmin = 1.9°
Tmin = 0.583, Tmax = 0.741h = −14→14
25592 measured reflectionsk = −15→15
5782 independent reflectionsl = −25→25

Refinement

Refinement on F26 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045w = 1/[σ2(Fo2) + 1.5543P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.77 e Å3
5782 reflectionsΔρmin = −1.63 e Å3
428 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.73313 (3)0.28658 (2)0.240306 (15)0.02324 (14)
N10.9295 (5)0.3407 (4)0.3039 (3)0.0301 (13)
C21.0234 (6)0.2942 (5)0.2843 (4)0.0314 (17)
C31.1302 (7)0.2917 (6)0.3230 (4)0.043 (2)
C41.1340 (8)0.3421 (7)0.3822 (4)0.053 (2)
H41.20330.34250.40950.063*
C51.0396 (7)0.3910 (6)0.4014 (4)0.044 (2)
H51.04350.42550.4410.053*
C60.9388 (7)0.3882 (6)0.3610 (4)0.0413 (19)
H60.87350.42120.37410.05*
C71.0039 (7)0.2447 (6)0.2190 (4)0.0374 (18)
O80.9005 (4)0.2233 (3)0.1990 (2)0.0311 (11)
O91.0864 (5)0.2306 (5)0.1881 (3)0.067 (2)
C101.2366 (8)0.2388 (8)0.3051 (6)0.069 (3)
H10A1.29680.24290.34050.104*
H10B1.26150.27430.26830.104*
H10C1.22010.1650.29470.104*
N110.5296 (5)0.3202 (5)0.1801 (3)0.0291 (13)
C120.4908 (6)0.2464 (5)0.1358 (3)0.0268 (15)
C130.3748 (7)0.2430 (6)0.1098 (4)0.0355 (17)
C140.3025 (7)0.3207 (6)0.1293 (4)0.043 (2)
H140.22440.320.11330.052*
C150.3431 (7)0.3994 (7)0.1720 (4)0.051 (2)
H150.29510.45410.18360.061*
C160.4579 (6)0.3936 (6)0.1967 (4)0.0381 (18)
H160.48630.44460.22690.046*
C170.5823 (6)0.1697 (5)0.1196 (3)0.0312 (16)
O180.6691 (4)0.1589 (3)0.1622 (2)0.0276 (10)
O190.5705 (5)0.1243 (4)0.0678 (2)0.0409 (13)
C200.3256 (7)0.1569 (6)0.0649 (4)0.052 (2)
H20A0.32260.09080.08810.078*
H20B0.3740.14810.03090.078*
H20C0.24870.17660.04680.078*
N210.5686 (5)0.1796 (5)0.2975 (3)0.0313 (14)
C220.5719 (6)0.2005 (5)0.3608 (3)0.0264 (15)
C230.5236 (7)0.1327 (5)0.4029 (3)0.0357 (17)
C240.4677 (7)0.0435 (6)0.3758 (4)0.0419 (19)
H240.4342−0.00460.40220.05*
C250.4604 (7)0.0241 (6)0.3116 (4)0.0416 (19)
H250.4195−0.03480.29360.05*
C260.5146 (7)0.0935 (6)0.2739 (4)0.0402 (19)
H260.51310.0790.23020.048*
C270.6349 (6)0.3030 (5)0.3811 (3)0.0296 (16)
O280.6793 (4)0.3518 (3)0.3374 (2)0.0294 (11)
O290.6355 (5)0.3339 (4)0.4368 (2)0.0386 (12)
C300.5320 (9)0.1480 (7)0.4743 (4)0.060 (3)
H30A0.61160.15990.4910.09*
H30B0.50370.08510.49380.09*
H30C0.48620.20880.48380.09*
N310.7520 (5)0.3872 (4)0.1301 (3)0.0317 (14)
C320.7060 (6)0.4861 (5)0.1258 (3)0.0314 (16)
C330.6665 (7)0.5319 (5)0.0673 (3)0.0371 (18)
C340.6810 (8)0.4736 (6)0.0131 (4)0.048 (2)
H340.65430.5012−0.02730.058*
C350.7342 (8)0.3756 (6)0.0175 (4)0.051 (2)
H350.74670.338−0.01950.061*
C360.7687 (7)0.3338 (6)0.0771 (4)0.0407 (19)
H360.80430.2670.08040.049*
C370.7039 (6)0.5389 (5)0.1895 (3)0.0284 (15)
O380.7132 (4)0.4795 (3)0.2383 (2)0.0270 (11)
O390.6971 (4)0.6366 (3)0.1914 (2)0.0302 (11)
C400.6091 (8)0.6392 (6)0.0615 (4)0.052 (2)
H40A0.55290.64410.09170.079*
H40B0.5710.64810.01860.079*
H40C0.66640.69420.07050.079*
Na10.8432 (2)0.0484 (2)0.16277 (12)0.0320 (6)
O410.7863 (5)0.0404 (4)0.0495 (3)0.0408 (13)
H41A0.777 (7)−0.022 (2)0.058 (4)0.049*
H41B0.720 (3)0.060 (6)0.048 (4)0.049*
O421.0436 (6)0.0189 (5)0.1588 (3)0.0574 (16)
H42A1.020 (9)0.068 (5)0.136 (4)0.069*
H42B1.073 (8)−0.003 (8)0.128 (3)0.069*
O431.0969 (6)−0.1006 (6)0.0514 (3)0.0682 (19)
H43A1.111 (9)−0.090 (8)0.015 (2)0.082*
H43B1.028 (3)−0.113 (8)0.040 (5)0.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.0261 (2)0.0200 (2)0.0234 (2)0.00011 (13)0.00207 (15)−0.00091 (13)
N10.032 (3)0.023 (3)0.035 (3)−0.004 (3)0.000 (3)−0.005 (3)
C20.027 (4)0.016 (3)0.052 (5)−0.004 (3)0.006 (4)0.001 (3)
C30.032 (4)0.036 (4)0.059 (6)0.001 (3)−0.007 (4)0.008 (4)
C40.050 (6)0.052 (5)0.050 (5)−0.002 (4)−0.018 (4)0.006 (4)
C50.047 (5)0.041 (4)0.041 (5)−0.008 (4)−0.009 (4)−0.005 (4)
C60.048 (5)0.030 (4)0.045 (5)−0.002 (3)0.002 (4)−0.003 (3)
C70.035 (5)0.029 (4)0.050 (5)0.001 (3)0.012 (4)−0.001 (3)
O80.025 (3)0.032 (3)0.036 (3)0.001 (2)0.005 (2)−0.005 (2)
O90.032 (3)0.095 (5)0.079 (5)−0.023 (3)0.030 (3)−0.039 (4)
C100.040 (6)0.073 (6)0.093 (8)0.014 (5)−0.002 (6)0.002 (6)
N110.020 (3)0.035 (3)0.033 (3)0.005 (3)0.002 (3)−0.006 (3)
C120.025 (4)0.029 (3)0.026 (4)0.003 (3)−0.002 (3)0.006 (3)
C130.034 (4)0.037 (4)0.035 (4)0.001 (3)−0.001 (4)0.009 (3)
C140.033 (4)0.043 (4)0.054 (5)0.007 (4)0.003 (4)0.005 (4)
C150.033 (5)0.052 (5)0.068 (6)0.016 (4)0.013 (4)−0.004 (4)
C160.032 (4)0.037 (4)0.047 (5)−0.003 (3)0.010 (4)0.002 (3)
C170.035 (4)0.029 (4)0.029 (4)−0.003 (3)−0.001 (3)0.000 (3)
O180.025 (2)0.026 (2)0.029 (3)−0.002 (2)−0.005 (2)−0.002 (2)
O190.048 (3)0.040 (3)0.032 (3)−0.001 (2)−0.002 (3)−0.011 (2)
C200.043 (5)0.048 (5)0.059 (6)0.000 (4)−0.022 (4)−0.005 (4)
N210.033 (3)0.028 (3)0.033 (3)0.001 (3)0.006 (3)0.003 (3)
C220.030 (4)0.021 (3)0.028 (4)0.001 (3)0.005 (3)0.007 (3)
C230.049 (5)0.024 (4)0.036 (4)0.001 (3)0.014 (4)0.007 (3)
C240.042 (5)0.031 (4)0.054 (5)−0.005 (3)0.013 (4)0.007 (4)
C250.039 (5)0.034 (4)0.053 (5)−0.010 (3)0.010 (4)−0.006 (4)
C260.045 (5)0.040 (4)0.035 (4)−0.009 (4)0.003 (4)−0.006 (3)
C270.030 (4)0.033 (4)0.025 (4)0.008 (3)0.003 (3)0.001 (3)
O280.040 (3)0.024 (2)0.027 (2)−0.002 (2)0.015 (2)−0.006 (2)
O290.049 (3)0.040 (3)0.027 (3)−0.007 (3)0.008 (2)−0.001 (2)
C300.100 (8)0.041 (5)0.041 (5)−0.026 (5)0.018 (5)0.005 (4)
N310.038 (4)0.026 (3)0.032 (3)−0.004 (3)0.007 (3)−0.001 (2)
C320.039 (4)0.023 (4)0.033 (4)−0.001 (3)0.009 (3)0.000 (3)
C330.045 (5)0.035 (4)0.031 (4)−0.012 (3)−0.002 (4)0.005 (3)
C340.075 (6)0.045 (5)0.026 (4)−0.016 (4)0.005 (4)0.001 (4)
C350.085 (7)0.039 (5)0.032 (4)−0.011 (4)0.019 (5)−0.005 (4)
C360.062 (5)0.027 (4)0.037 (4)−0.003 (4)0.018 (4)−0.003 (3)
C370.029 (4)0.022 (4)0.034 (4)−0.003 (3)0.000 (3)0.001 (3)
O380.044 (3)0.007 (2)0.031 (3)0.0076 (18)0.009 (2)0.0021 (18)
O390.039 (3)0.022 (2)0.029 (3)−0.002 (2)0.003 (2)−0.006 (2)
C400.065 (6)0.040 (5)0.050 (5)−0.005 (4)−0.005 (5)0.011 (4)
Na10.0388 (16)0.0279 (14)0.0295 (14)0.0015 (12)0.0048 (13)−0.0019 (11)
O410.054 (4)0.038 (3)0.032 (3)0.007 (3)0.013 (3)0.002 (2)
O420.057 (4)0.058 (4)0.061 (4)0.007 (3)0.020 (4)−0.005 (3)
O430.049 (4)0.107 (5)0.052 (4)−0.013 (4)0.018 (4)−0.001 (4)

Geometric parameters (Å, °)

Eu1—O282.362 (4)N21—C221.360 (9)
Eu1—O182.366 (4)C22—C231.399 (9)
Eu1—O82.375 (5)C22—C271.526 (9)
Eu1—O382.445 (4)C23—C241.392 (10)
Eu1—O39i2.461 (4)C23—C301.513 (11)
Eu1—N112.606 (5)C24—C251.371 (11)
Eu1—N12.619 (6)C24—H240.94
Eu1—N312.683 (6)C25—C261.386 (10)
Eu1—N212.745 (6)C25—H250.94
N1—C61.341 (9)C26—H260.94
N1—C21.354 (9)C27—O291.238 (8)
C2—C31.415 (11)C27—O281.271 (8)
C2—C71.507 (11)O28—Na1ii2.495 (5)
C3—C41.399 (12)C30—H30A0.97
C3—C101.501 (12)C30—H30B0.97
C4—C51.368 (12)C30—H30C0.97
C4—H40.94N31—C361.342 (9)
C5—C61.376 (11)N31—C321.359 (8)
C5—H50.94C32—C331.395 (10)
C6—H60.94C32—C371.505 (9)
C7—O91.242 (9)C33—C341.389 (10)
C7—O81.266 (9)C33—C401.510 (11)
O8—Na12.405 (5)C34—C351.382 (12)
C10—H10A0.97C34—H340.94
C10—H10B0.97C35—C361.382 (11)
C10—H10C0.97C35—H350.94
N11—C161.325 (9)C36—H360.94
N11—C121.360 (9)C37—O391.236 (7)
C12—C131.408 (10)C37—O381.269 (8)
C12—C171.512 (10)O38—Na1ii2.425 (5)
C13—C141.389 (11)O39—Eu1ii2.461 (4)
C13—C201.513 (11)C40—H40A0.97
C14—C151.388 (12)C40—H40B0.97
C14—H140.94C40—H40C0.97
C15—C161.389 (11)Na1—O422.390 (7)
C15—H150.94Na1—O412.412 (6)
C16—H160.94Na1—O38i2.425 (5)
C17—O191.229 (8)Na1—O28i2.495 (5)
C17—O181.287 (8)O41—H41A0.82 (2)
O18—Na12.470 (5)O41—H41B0.81 (2)
C20—H20A0.97O42—H42A0.81 (4)
C20—H20B0.97O42—H42B0.82 (4)
C20—H20C0.97O43—H43A0.82 (3)
N21—C261.326 (9)O43—H43B0.83 (2)
O28—Eu1—O18138.38 (16)H20A—C20—H20C109.5
O28—Eu1—O8138.64 (17)H20B—C20—H20C109.5
O18—Eu1—O873.99 (16)C26—N21—C22119.2 (6)
O28—Eu1—O3868.54 (14)C26—N21—Eu1124.5 (5)
O18—Eu1—O38130.08 (15)C22—N21—Eu1113.3 (4)
O8—Eu1—O38114.16 (15)N21—C22—C23122.6 (6)
O28—Eu1—O39i82.10 (15)N21—C22—C27113.5 (6)
O18—Eu1—O39i86.72 (15)C23—C22—C27123.9 (6)
O8—Eu1—O39i73.99 (16)C24—C23—C22116.0 (7)
O38—Eu1—O39i143.12 (15)C24—C23—C30119.1 (7)
O28—Eu1—N1192.68 (17)C22—C23—C30124.8 (7)
O18—Eu1—N1164.57 (16)C25—C24—C23121.6 (7)
O8—Eu1—N11128.55 (17)C25—C24—H24119.2
O38—Eu1—N1175.50 (17)C23—C24—H24119.2
O39i—Eu1—N11129.43 (17)C24—C25—C26118.3 (7)
O28—Eu1—N176.71 (17)C24—C25—H25120.8
O18—Eu1—N1136.50 (16)C26—C25—H25120.8
O8—Eu1—N164.04 (17)N21—C26—C25122.2 (7)
O38—Eu1—N179.96 (16)N21—C26—H26118.9
O39i—Eu1—N171.71 (16)C25—C26—H26118.9
N11—Eu1—N1155.41 (18)O29—C27—O28125.5 (7)
O28—Eu1—N31130.23 (16)O29—C27—C22118.9 (6)
O18—Eu1—N3176.59 (16)O28—C27—C22115.5 (6)
O8—Eu1—N3171.71 (17)C27—O28—Eu1129.5 (4)
O38—Eu1—N3162.05 (15)C27—O28—Na1ii115.5 (4)
O39i—Eu1—N31144.81 (17)Eu1—O28—Na1ii112.56 (18)
N11—Eu1—N3170.19 (18)C23—C30—H30A109.5
N1—Eu1—N3199.62 (18)C23—C30—H30B109.5
O28—Eu1—N2161.14 (16)H30A—C30—H30B109.5
O18—Eu1—N2177.87 (17)C23—C30—H30C109.5
O8—Eu1—N21130.42 (17)H30A—C30—H30C109.5
O38—Eu1—N21115.25 (16)H30B—C30—H30C109.5
O39i—Eu1—N2164.34 (17)C36—N31—C32120.0 (6)
N11—Eu1—N2169.23 (18)C36—N31—Eu1121.5 (4)
N1—Eu1—N21121.48 (18)C32—N31—Eu1114.9 (4)
N31—Eu1—N21138.30 (18)N31—C32—C33121.9 (6)
O28—Eu1—Na1143.49 (12)N31—C32—C37113.2 (6)
O18—Eu1—Na140.69 (11)C33—C32—C37124.9 (6)
O8—Eu1—Na139.15 (12)C34—C33—C32116.9 (7)
O38—Eu1—Na1146.40 (11)C34—C33—C40120.2 (7)
O39i—Eu1—Na161.90 (11)C32—C33—C40122.8 (7)
N11—Eu1—Na1105.07 (13)C35—C34—C33120.9 (7)
N1—Eu1—Na196.20 (13)C35—C34—H34119.5
N31—Eu1—Na186.14 (13)C33—C34—H34119.5
N21—Eu1—Na195.37 (13)C36—C35—C34119.1 (7)
O28—Eu1—Na1ii34.76 (11)C36—C35—H35120.5
O18—Eu1—Na1ii147.06 (11)C34—C35—H35120.5
O8—Eu1—Na1ii134.53 (12)N31—C36—C35120.9 (7)
O38—Eu1—Na1ii33.77 (11)N31—C36—H36119.5
O39i—Eu1—Na1ii114.16 (11)C35—C36—H36119.5
N11—Eu1—Na1ii82.61 (13)O39—C37—O38124.2 (6)
N1—Eu1—Na1ii76.06 (13)O39—C37—C32118.5 (6)
N31—Eu1—Na1ii95.64 (12)O38—C37—C32117.2 (5)
N21—Eu1—Na1ii88.33 (13)C37—O38—Na1ii118.8 (4)
Na1—Eu1—Na1ii172.242 (13)C37—O38—Eu1126.9 (4)
C6—N1—C2119.0 (6)Na1ii—O38—Eu1112.13 (17)
C6—N1—Eu1123.7 (5)C37—O39—Eu1ii140.1 (4)
C2—N1—Eu1115.3 (4)C33—C40—H40A109.5
N1—C2—C3121.9 (7)C33—C40—H40B109.5
N1—C2—C7114.6 (6)H40A—C40—H40B109.5
C3—C2—C7123.4 (7)C33—C40—H40C109.5
C4—C3—C2116.3 (8)H40A—C40—H40C109.5
C4—C3—C10119.1 (8)H40B—C40—H40C109.5
C2—C3—C10124.7 (8)O42—Na1—O885.1 (2)
C5—C4—C3121.7 (8)O42—Na1—O4196.8 (2)
C5—C4—H4119.2O8—Na1—O41112.9 (2)
C3—C4—H4119.2O42—Na1—O38i109.9 (2)
C4—C5—C6118.1 (8)O8—Na1—O38i98.53 (18)
C4—C5—H5120.9O41—Na1—O38i140.2 (2)
C6—C5—H5120.9O42—Na1—O18154.5 (2)
N1—C6—C5123.0 (8)O8—Na1—O1871.62 (17)
N1—C6—H6118.5O41—Na1—O1883.39 (18)
C5—C6—H6118.5O38i—Na1—O1884.22 (17)
O9—C7—O8124.5 (8)O42—Na1—O28i87.1 (2)
O9—C7—C2119.8 (7)O8—Na1—O28i159.7 (2)
O8—C7—C2115.7 (6)O41—Na1—O28i86.55 (18)
C7—O8—Eu1127.2 (5)O38i—Na1—O28i66.77 (15)
C7—O8—Na1121.6 (4)O18—Na1—O28i118.29 (18)
Eu1—O8—Na1102.29 (19)O42—Na1—Eu1122.20 (18)
C3—C10—H10A109.5O8—Na1—Eu138.56 (12)
C3—C10—H10B109.5O41—Na1—Eu1113.60 (15)
H10A—C10—H10B109.5O38i—Na1—Eu176.54 (12)
C3—C10—H10C109.5O18—Na1—Eu138.65 (11)
H10A—C10—H10C109.5O28i—Na1—Eu1139.58 (14)
H10B—C10—H10C109.5O42—Na1—Eu1i99.58 (18)
C16—N11—C12119.2 (6)O8—Na1—Eu1i131.19 (15)
C16—N11—Eu1123.9 (5)O41—Na1—Eu1i114.62 (15)
C12—N11—Eu1116.1 (4)O38i—Na1—Eu1i34.09 (10)
N11—C12—C13121.4 (6)O18—Na1—Eu1i103.45 (13)
N11—C12—C17113.8 (6)O28i—Na1—Eu1i32.67 (10)
C13—C12—C17124.8 (6)Eu1—Na1—Eu1i109.18 (7)
C14—C13—C12117.2 (7)O42—Na1—H41A97 (2)
C14—C13—C20119.5 (7)O8—Na1—H41A132.3 (6)
C12—C13—C20123.3 (7)O41—Na1—H41A19.4 (6)
C15—C14—C13121.5 (8)O38i—Na1—H41A124.4 (12)
C15—C14—H14119.2O18—Na1—H41A91.5 (18)
C13—C14—H14119.2O28i—Na1—H41A67.2 (7)
C14—C15—C16116.8 (7)Eu1—Na1—H41A127.3 (16)
C14—C15—H15121.6Eu1i—Na1—H41A95.6 (7)
C16—C15—H15121.6O42—Na1—H42A19.9 (10)
N11—C16—C15123.7 (7)O8—Na1—H42A75 (2)
N11—C16—H16118.2O41—Na1—H42A85 (2)
C15—C16—H16118.2O38i—Na1—H42A127.8 (14)
O19—C17—O18125.0 (7)O18—Na1—H42A136.9 (11)
O19—C17—C12119.3 (6)O28i—Na1—H42A102.2 (18)
O18—C17—C12115.6 (6)Eu1—Na1—H42A114 (2)
C17—O18—Eu1125.3 (4)Eu1i—Na1—H42A119.1 (8)
C17—O18—Na1130.5 (4)H41A—Na1—H42A91 (3)
Eu1—O18—Na1100.66 (17)Na1—O41—H41B101 (7)
C13—C20—H20A109.5H41A—O41—H41B99 (8)
C13—C20—H20B109.5Na1—O42—H42B126 (7)
H20A—C20—H20B109.5H42A—O42—H42B86 (10)
C13—C20—H20C109.5H43A—O43—H43B93 (10)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O41—H41A···O29i0.82 (2)2.08 (6)2.767 (7)141 (8)
O41—H41B···O190.81 (2)2.02 (3)2.809 (8)164 (9)
O42—H42A···O90.81 (4)2.41 (10)2.774 (9)108 (8)
O42—H42B···O430.82 (4)2.08 (4)2.852 (10)158 (10)
O43—H43A···O41iii0.82 (3)2.02 (6)2.769 (9)152 (11)
O43—H43B···O29i0.83 (2)2.14 (6)2.884 (8)149 (10)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2695).

References

  • Brandenburg, K. (2010). Diamond, Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Godlewska, P., Macalik, L. & Hanuza, J. (2008). J. Alloys Compd, 451, 236–239.
  • Hong, J. H., Oh, Y., Kim, Y., Kang, S. K., Choi, J., Kim, W. S., Lee, J. I., Kim, S. & Hur, N. H. (2008). Cryst. Growth Des., 8, 1364–1371.
  • Kukovec, B., Popovic, Z., Komorsky-Lovric, S., Vojkovic, V. & Vinkovic, M. (2009). Inorg. Chim. Acta, 362, 2704–2714.
  • Legendziewicz, J. (2002). J. Alloys Compd.341, 34–44.
  • Lis, S., Piskula, Z. & Kubicki, M. (2009). Mater. Chem. Phys.114, 134–138.
  • Seo, H. J., Yoo, K., Song, M., Park, J. S., Jin, S., Kim, Y. I. & Kim, J. (2010). Org. Electron.11, 564–572.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soares-Santos, P. C. R., Paz, F. A. A., Sa Ferreira, R. A., Klinowski, J., Carlos, L. D., Trindade, T. & Norgueira, H. I. S. (2006). Polyhedron, 25, 2471–2482.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography