PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2463.
Published online 2010 August 28. doi:  10.1107/S1600536810034070
PMCID: PMC3007900

(1S,2S,4R)-3,3-Dichloro-4,8,12,12-tetra­methyl­tricyclo­[5.5.0.02,4]dodeca-6,8-diene

Abstract

The title compound, C16H22Cl2, a derivative of β-himachalene, was semi-synthesized from natural essential oils of Cedrus atlantica. The mol­ecule is built up from two fused six- and seven-membered rings. The six-membered ring has a perfect chair conformation, whereas the seven-membered ring displays a screw boat conformation; the dihedral angle between the rings is 46.48 (9)°.

Related literature

For background to himachalene derivatives, see: Plattier & Teiseire (1974 [triangle]); Sbai et al. (2002 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For the synthesis of the title compound, see: Lassaba et al. (1997 [triangle]). For the reactivity of this sesquiterpene, see: El Jamili et al. (2002 [triangle]; Sbai et al. (2002 [triangle]). For the olfactive properties of β-himachalene, see: Benharref et al. (1991 [triangle]); Bisarya & Dev (1968 [triangle]); Chekroun et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2463-scheme1.jpg

Experimental

Crystal data

  • C16H22Cl2
  • M r = 285.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2463-efi1.jpg
  • a = 7.4356 (17) Å
  • b = 8.3124 (18) Å
  • c = 24.108 (6) Å
  • V = 1490.1 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 298 K
  • 0.27 × 0.18 × 0.12 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer
  • 10992 measured reflections
  • 3691 independent reflections
  • 3282 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.096
  • S = 1.11
  • 3691 reflections
  • 175 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1985 [triangle]), 1535 Friedel pairs
  • Flack parameter: −0.06 (6)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT-Plus (Bruker, 2009 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034070/er2079sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034070/er2079Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Bisarya & Dev, 1968; Plattier & Teiseire, 1974). The reactivity of this sesquiterpene has been studied extensively by our team (El Jamili et al., 2002; Sbai et al., 2002) in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry. Thus, the action of one equivalent of meta-chloroperbenzoïc acide (m-CPBA) on, β- himachalène gives in quantitative yields the monoepoxyde (Benharref et al., 1991; Chekroun et al., 2000). The treatement of this monoepoxyde with dichlorocarbene, generated in situ from chloroform and in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, give a mixtrure of two diastereoisomers: (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10]dodecane and (1S,2R,7S,8R,10S) -9,9-dichloro-1,2-epoxy-2,6,6,10-tetramethyl- tricyclo[5,5,0,08,10] dodecane (Lassaba et al., 1997). Also in order to prepare products with high added value, we have treated the isomer (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10] dodecane (I) by hydrochloric acid gas and we got one sesquiterpene dichloro-hydrocarbure (II) in yield 75%. The molecule is built up from two fused six-and seven-membered rings(Fig.1). The six-membered ring has a perfect chair conformation, with as indicated by the total puckering amplitude QT = 0.2385 (2)Å and spherical polar angle θ= 99.60 (2)° with [var phi] -117.07 (2)°, whereas the seven-membered ring display a screw boat conformation with QT = 0.9566 (2) Å, θ = 68.84 (2)°, [var phi]2 = -112.42 (1)° and [var phi]3 = 142.26 (3)° (Cremer & Pople, 1975). Owing to the presence of the Cl atoms, the absolute configuration could be fully confirmed to be C7(S), C8(S) and C10(R) (Flack & Bernardinelli, 2000).

Experimental

100 mg (0,33 mm l) of the isomer, (1S,2R,7S,8S,10R)-9,9-dichloro- 1,2-epoxy-2,6,6,10- tetramethyl-tricyclo[5,5,0,08,10]dodecane, dissolved in 20 ml of dichloromethane and then treated with a stream of gaseous hydrochloric acid at 0° for 5 minutes. After concentration of solvent, the residue obtained was chromatgraphed on silica gel impregnated with silver nitrate (10%) with hexane as eluent.

Refinement

Except H3 and H12, all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
The formation of the title compound.

Crystal data

C16H22Cl2F(000) = 608
Mr = 285.24Dx = 1.271 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10992 reflections
a = 7.4356 (17) Åθ = 1.7–28.4°
b = 8.3124 (18) ŵ = 0.42 mm1
c = 24.108 (6) ÅT = 298 K
V = 1490.1 (6) Å3Prism, colourless
Z = 40.27 × 0.18 × 0.12 mm

Data collection

Bruker X8 APEXII CCD area-detector diffractometer3282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 28.4°, θmin = 1.7°
[var phi] and ω scansh = −7→9
10992 measured reflectionsk = −8→11
3691 independent reflectionsl = −32→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3691 reflectionsΔρmax = 0.34 e Å3
175 parametersΔρmin = −0.29 e Å3
0 restraintsAbsolute structure: Flack (1985), 1535 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6213 (2)0.33418 (19)0.89982 (6)0.0375 (3)
C20.4484 (2)0.3173 (2)0.92944 (6)0.0476 (4)
C30.3427 (3)0.4400 (3)0.94246 (7)0.0551 (5)
C40.3834 (3)0.6154 (3)0.93795 (8)0.0588 (5)
H4A0.31460.67300.96580.071*
H4B0.34510.65350.90180.071*
C50.5809 (2)0.6534 (2)0.94551 (7)0.0514 (4)
H5A0.62900.58340.97410.062*
H5B0.59190.76330.95870.062*
C60.6957 (2)0.63474 (18)0.89326 (6)0.0405 (3)
C70.6413 (2)0.47755 (17)0.86197 (6)0.0341 (3)
H70.52340.49700.84510.041*
C80.7727 (2)0.44941 (18)0.81513 (6)0.0384 (3)
H80.81380.54870.79730.046*
C90.7663 (2)0.30866 (19)0.77693 (7)0.0427 (3)
C100.9167 (2)0.3203 (2)0.81854 (7)0.0438 (3)
C110.9108 (2)0.2114 (2)0.86840 (8)0.0497 (4)
H11A0.92570.10140.85580.060*
H11B1.01270.23680.89200.060*
C120.7456 (3)0.2200 (2)0.90240 (7)0.0457 (4)
C131.1028 (3)0.3568 (3)0.79848 (9)0.0628 (5)
H13A1.16000.25900.78670.094*
H13B1.17120.40440.82800.094*
H13C1.09660.43040.76790.094*
C140.8912 (3)0.6291 (2)0.91128 (8)0.0546 (4)
H14A0.91190.53360.93280.082*
H14B0.91810.72210.93340.082*
H14C0.96730.62800.87910.082*
C150.6651 (3)0.7795 (2)0.85566 (8)0.0573 (5)
H15A0.73780.76900.82290.086*
H15B0.69780.87610.87500.086*
H15C0.54060.78470.84530.086*
C160.3883 (3)0.1489 (3)0.94230 (11)0.0727 (6)
H16A0.47250.09960.96730.109*
H16B0.38250.08760.90860.109*
H16C0.27160.15180.95930.109*
Cl10.59995 (6)0.16140 (5)0.781164 (18)0.05350 (13)
Cl20.81596 (8)0.34714 (7)0.706600 (17)0.06577 (16)
H30.223 (3)0.414 (3)0.9587 (9)0.074 (6)*
H120.732 (3)0.127 (3)0.9270 (9)0.064 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0388 (7)0.0457 (7)0.0281 (6)−0.0004 (7)0.0008 (5)−0.0004 (6)
C20.0430 (9)0.0676 (11)0.0323 (7)−0.0041 (8)0.0017 (6)0.0061 (7)
C30.0393 (9)0.0868 (13)0.0391 (9)−0.0009 (9)0.0065 (7)−0.0031 (9)
C40.0457 (10)0.0781 (12)0.0526 (10)0.0142 (9)0.0084 (8)−0.0187 (9)
C50.0500 (9)0.0632 (10)0.0411 (8)0.0055 (9)−0.0002 (7)−0.0196 (8)
C60.0404 (8)0.0440 (8)0.0370 (7)0.0023 (7)−0.0012 (6)−0.0080 (6)
C70.0324 (7)0.0403 (7)0.0297 (6)0.0027 (6)−0.0007 (5)−0.0020 (5)
C80.0422 (8)0.0404 (7)0.0326 (7)−0.0017 (6)0.0054 (6)−0.0022 (6)
C90.0434 (8)0.0512 (8)0.0334 (7)−0.0048 (6)0.0071 (6)−0.0074 (6)
C100.0374 (8)0.0520 (8)0.0420 (8)0.0002 (7)0.0066 (6)−0.0116 (7)
C110.0441 (9)0.0517 (9)0.0532 (10)0.0111 (7)−0.0005 (8)−0.0033 (7)
C120.0526 (10)0.0458 (8)0.0388 (8)0.0016 (7)−0.0013 (7)0.0033 (7)
C130.0432 (9)0.0831 (13)0.0621 (11)−0.0044 (10)0.0113 (8)−0.0171 (11)
C140.0431 (9)0.0663 (11)0.0545 (10)−0.0054 (9)−0.0050 (8)−0.0144 (8)
C150.0744 (14)0.0392 (8)0.0583 (11)0.0027 (9)−0.0033 (10)−0.0024 (8)
C160.0590 (12)0.0815 (13)0.0776 (14)−0.0113 (12)0.0084 (11)0.0310 (12)
Cl10.0529 (2)0.0574 (2)0.0502 (2)−0.0120 (2)−0.00032 (18)−0.00975 (19)
Cl20.0750 (3)0.0874 (3)0.0349 (2)−0.0115 (3)0.0142 (2)−0.0107 (2)

Geometric parameters (Å, °)

C1—C121.326 (2)C9—C101.505 (2)
C1—C21.477 (2)C9—Cl11.7433 (16)
C1—C71.508 (2)C9—Cl21.7645 (17)
C2—C31.326 (3)C10—C131.497 (2)
C2—C161.502 (3)C10—C111.505 (3)
C3—C41.493 (3)C11—C121.479 (3)
C3—H31.00 (3)C11—H11A0.9700
C4—C51.513 (3)C11—H11B0.9700
C4—H4A0.9700C12—H120.98 (2)
C4—H4B0.9700C13—H13A0.9600
C5—C61.530 (2)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C141.519 (2)C14—H14B0.9600
C6—C151.524 (2)C14—H14C0.9600
C6—C71.562 (2)C15—H15A0.9600
C7—C81.511 (2)C15—H15B0.9600
C7—H70.9800C15—H15C0.9600
C8—C91.490 (2)C16—H16A0.9600
C8—C101.518 (2)C16—H16B0.9600
C8—H80.9800C16—H16C0.9600
C12—C1—C2121.04 (16)C8—C9—Cl2116.42 (12)
C12—C1—C7121.66 (14)C10—C9—Cl2118.25 (11)
C2—C1—C7116.97 (14)Cl1—C9—Cl2109.39 (9)
C3—C2—C1123.86 (17)C13—C10—C11114.00 (16)
C3—C2—C16119.48 (18)C13—C10—C9118.97 (15)
C1—C2—C16116.59 (17)C11—C10—C9118.17 (15)
C2—C3—C4127.88 (17)C13—C10—C8119.41 (16)
C2—C3—H3117.2 (14)C11—C10—C8116.60 (13)
C4—C3—H3114.8 (13)C9—C10—C859.03 (10)
C3—C4—C5113.09 (17)C12—C11—C10115.96 (15)
C3—C4—H4A109.0C12—C11—H11A108.3
C5—C4—H4A109.0C10—C11—H11A108.3
C3—C4—H4B109.0C12—C11—H11B108.3
C5—C4—H4B109.0C10—C11—H11B108.3
H4A—C4—H4B107.8H11A—C11—H11B107.4
C4—C5—C6114.91 (14)C1—C12—C11126.00 (17)
C4—C5—H5A108.5C1—C12—H12121.5 (13)
C6—C5—H5A108.5C11—C12—H12112.4 (13)
C4—C5—H5B108.5C10—C13—H13A109.5
C6—C5—H5B108.5C10—C13—H13B109.5
H5A—C5—H5B107.5H13A—C13—H13B109.5
C14—C6—C15109.72 (16)C10—C13—H13C109.5
C14—C6—C5107.57 (14)H13A—C13—H13C109.5
C15—C6—C5109.07 (14)H13B—C13—H13C109.5
C14—C6—C7111.10 (13)C6—C14—H14A109.5
C15—C6—C7109.56 (13)C6—C14—H14B109.5
C5—C6—C7109.78 (13)H14A—C14—H14B109.5
C1—C7—C8113.17 (12)C6—C14—H14C109.5
C1—C7—C6113.22 (12)H14A—C14—H14C109.5
C8—C7—C6108.85 (12)H14B—C14—H14C109.5
C1—C7—H7107.1C6—C15—H15A109.5
C8—C7—H7107.1C6—C15—H15B109.5
C6—C7—H7107.1H15A—C15—H15B109.5
C9—C8—C7124.25 (13)C6—C15—H15C109.5
C9—C8—C1060.05 (10)H15A—C15—H15C109.5
C7—C8—C10121.66 (13)H15B—C15—H15C109.5
C9—C8—H8113.6C2—C16—H16A109.5
C7—C8—H8113.6C2—C16—H16B109.5
C10—C8—H8113.6H16A—C16—H16B109.5
C8—C9—C1060.92 (11)C2—C16—H16C109.5
C8—C9—Cl1122.54 (11)H16A—C16—H16C109.5
C10—C9—Cl1122.22 (12)H16B—C16—H16C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2079).

References

  • Benharref, A., Chekroun, A. & Lavergne, J. P. (1991). Bull. Soc. Chim. Fr.128, 738–741.
  • Bisarya, S. C. & Dev, S. (1968). Tetrahedron, 24, 3861–3867.
  • Bruker (2009). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem.65, 4431–4434. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett.43, 6645–6648.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg.106, 281–288.
  • Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.
  • Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography