PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2360.
Published online 2010 August 21. doi:  10.1107/S1600536810032708
PMCID: PMC3007898

(E)-N′-(2-Thienyl­methyl­idene)-p-toluene­sulfono­hydrazide

Abstract

The S—N(H)—N=C linkage in the title mol­ecule, C12H12N2O2S2, is non-planar [torsion angle = 15.5 (1)°] as the amino N atom is pyramidally coordinated. The amino group acts as a hydrogen-bond donor to an O atom of an adjacent mol­ecule, generating chains running parallel to the c axis.

Related literature

For the structure of the (E)-N′-benzyl­idene-p-toluene­sulf­ono­hydrazide homolog, see: Mehrabi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2360-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2S2
  • M r = 280.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2360-efi1.jpg
  • a = 14.3758 (10) Å
  • b = 9.8613 (7) Å
  • c = 9.6172 (7) Å
  • β = 104.981 (1)°
  • V = 1317.03 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 100 K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.857, T max = 0.925
  • 8238 measured reflections
  • 3022 independent reflections
  • 2728 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.085
  • S = 1.04
  • 3022 reflections
  • 168 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032708/pk2261sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032708/pk2261Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank King Abdul Aziz University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

p-Toluenesulfonyl hydrazide, CH3-4-C6H4SO2NHNH2, condenses with carbonyl compounds to form Schiff bases, and among the plethora nearly a hundred have had their crystal structures determined. The compounds have the azomethine double-bond in an E-configuration. In the Schiff base product between p-toluenesulfonyl hydrazide and thiophene-2-carboxaldehyde, the S–N(H)–N═C linkage is non-planar [torsion angle 15.5 (1) °] because the amino nitrogen atom (which bears a hydrogen atom) is pyramidally coordinated (Fig. 1). The amino group acts as a hydrogen-bond donor to an oxygen atom of an adjacent molecule to generate a chain running along the c-axis of the monoclinic cell (Fig. 2). The oxygen atom involved in hydrogen bonding [S–O 1.4355 (10) Å] is marginally farther from the sulfur atom than the oxygen that is not involved in hydrogen bonding [S–O 1.4288 (10) Å].

Experimental

p-Toluenesulfonyl hydrazide (4.66 g, 2.5 mmol) and thiophene-2-carboxaldehyde (2.80 g, 2.5 mmol) were heated in methanol (50 ml) for two hours. The cool solution yielded a precipitate that was recrystallized from ethanol and collected in 90% yield.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.99 Å, U(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint [N–H 0.86 (1) Å]; its temperature factor was freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C12H12N2O2S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
A view of the chain structure resulting from N—H···O hydrogen-bonding.

Crystal data

C12H12N2O2S2F(000) = 584
Mr = 280.36Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4750 reflections
a = 14.3758 (10) Åθ = 2.5–28.3°
b = 9.8613 (7) ŵ = 0.40 mm1
c = 9.6172 (7) ÅT = 100 K
β = 104.981 (1)°Prism, yellow
V = 1317.03 (16) Å30.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer3022 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.857, Tmax = 0.925k = −12→12
8238 measured reflectionsl = −8→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0458P)2 + 0.7746P] where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.16267 (2)0.25347 (3)0.52894 (3)0.01262 (10)
S20.51633 (3)0.43030 (4)0.75091 (4)0.02186 (11)
O10.18378 (8)0.21042 (11)0.67638 (11)0.0176 (2)
O20.08674 (7)0.18970 (10)0.42362 (11)0.0174 (2)
N10.26105 (9)0.22234 (13)0.47478 (13)0.0148 (2)
H10.2522 (14)0.235 (2)0.3840 (11)0.024 (5)*
N20.34437 (9)0.28097 (12)0.56466 (13)0.0156 (2)
C10.14605 (10)0.42992 (14)0.52115 (15)0.0136 (3)
C20.08653 (10)0.48722 (15)0.39742 (15)0.0159 (3)
H20.05300.43130.32030.019*
C30.07698 (10)0.62763 (15)0.38847 (15)0.0170 (3)
H30.03600.66730.30480.020*
C40.12658 (10)0.71101 (15)0.50031 (16)0.0172 (3)
C50.18520 (11)0.65074 (15)0.62312 (16)0.0206 (3)
H50.21890.70650.70030.025*
C60.19530 (11)0.51082 (15)0.63480 (15)0.0191 (3)
H60.23530.47100.71920.023*
C70.11737 (12)0.86307 (15)0.48857 (17)0.0216 (3)
H7A0.12900.90250.58510.032*
H7B0.05240.88700.43220.032*
H7C0.16470.89870.44080.032*
C80.41651 (11)0.28677 (14)0.51016 (16)0.0169 (3)
H80.41090.25230.41610.020*
C90.50662 (10)0.34545 (15)0.59069 (16)0.0173 (3)
C100.59275 (11)0.34852 (15)0.55085 (17)0.0208 (3)
H100.60190.30790.46580.025*
C110.66556 (11)0.41995 (16)0.65279 (19)0.0235 (3)
H110.72910.43240.64310.028*
C120.63483 (11)0.46843 (16)0.76529 (18)0.0238 (3)
H120.67450.51790.84320.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01349 (18)0.01241 (17)0.01124 (17)−0.00057 (12)0.00189 (13)0.00002 (11)
S20.0198 (2)0.0240 (2)0.0209 (2)−0.00308 (14)0.00374 (15)−0.00061 (14)
O10.0225 (5)0.0173 (5)0.0128 (5)−0.0004 (4)0.0045 (4)0.0019 (4)
O20.0160 (5)0.0164 (5)0.0175 (5)−0.0029 (4)0.0002 (4)−0.0010 (4)
N10.0137 (6)0.0176 (6)0.0120 (6)0.0007 (4)0.0014 (4)−0.0019 (4)
N20.0142 (6)0.0142 (5)0.0163 (6)−0.0001 (4)0.0000 (5)0.0006 (4)
C10.0136 (6)0.0128 (6)0.0149 (6)0.0002 (5)0.0048 (5)0.0003 (5)
C20.0133 (6)0.0180 (7)0.0152 (6)−0.0005 (5)0.0018 (5)−0.0011 (5)
C30.0136 (6)0.0192 (7)0.0168 (7)0.0024 (5)0.0017 (5)0.0031 (5)
C40.0161 (7)0.0159 (7)0.0210 (7)0.0011 (5)0.0073 (6)0.0017 (5)
C50.0249 (7)0.0170 (7)0.0177 (7)−0.0016 (6)0.0013 (6)−0.0032 (6)
C60.0226 (7)0.0179 (7)0.0138 (7)0.0015 (6)−0.0005 (5)0.0002 (5)
C70.0246 (8)0.0143 (7)0.0256 (8)0.0008 (6)0.0062 (6)0.0017 (6)
C80.0184 (7)0.0140 (6)0.0176 (7)0.0017 (5)0.0032 (5)0.0006 (5)
C90.0169 (7)0.0145 (6)0.0199 (7)0.0012 (5)0.0038 (5)0.0026 (5)
C100.0203 (7)0.0163 (7)0.0248 (8)−0.0010 (6)0.0040 (6)0.0040 (6)
C110.0164 (7)0.0190 (7)0.0340 (9)−0.0011 (6)0.0048 (6)0.0077 (6)
C120.0189 (7)0.0192 (7)0.0293 (8)−0.0042 (6)−0.0006 (6)0.0035 (6)

Geometric parameters (Å, °)

S1—O21.4288 (10)C4—C71.507 (2)
S1—O11.4355 (10)C5—C61.389 (2)
S1—N11.6572 (13)C5—H50.9500
S1—C11.7553 (14)C6—H60.9500
S2—C121.7148 (16)C7—H7A0.9800
S2—C91.7270 (15)C7—H7B0.9800
N1—N21.4074 (16)C7—H7C0.9800
N1—H10.859 (9)C8—C91.447 (2)
N2—C81.279 (2)C8—H80.9500
C1—C61.3901 (19)C9—C101.388 (2)
C1—C21.3932 (19)C10—C111.422 (2)
C2—C31.392 (2)C10—H100.9500
C2—H20.9500C11—C121.357 (2)
C3—C41.395 (2)C11—H110.9500
C3—H30.9500C12—H120.9500
C4—C51.394 (2)
O2—S1—O1119.85 (6)C4—C5—H5119.3
O2—S1—N1104.68 (6)C1—C6—C5119.03 (13)
O1—S1—N1106.02 (6)C1—C6—H6120.5
O2—S1—C1109.60 (6)C5—C6—H6120.5
O1—S1—C1109.08 (7)C4—C7—H7A109.5
N1—S1—C1106.74 (6)C4—C7—H7B109.5
C12—S2—C991.59 (8)H7A—C7—H7B109.5
N2—N1—S1113.01 (9)C4—C7—H7C109.5
N2—N1—H1116.3 (13)H7A—C7—H7C109.5
S1—N1—H1112.1 (13)H7B—C7—H7C109.5
C8—N2—N1114.73 (12)N2—C8—C9120.48 (14)
C6—C1—C2120.95 (13)N2—C8—H8119.8
C6—C1—S1119.95 (11)C9—C8—H8119.8
C2—C1—S1119.03 (11)C10—C9—C8126.88 (14)
C1—C2—C3119.03 (13)C10—C9—S2111.33 (11)
C1—C2—H2120.5C8—C9—S2121.73 (11)
C3—C2—H2120.5C9—C10—C11111.76 (14)
C4—C3—C2121.08 (13)C9—C10—H10124.1
C4—C3—H3119.5C11—C10—H10124.1
C2—C3—H3119.5C12—C11—C10113.01 (14)
C3—C4—C5118.60 (13)C12—C11—H11123.5
C3—C4—C7120.76 (13)C10—C11—H11123.5
C5—C4—C7120.65 (14)C11—C12—S2112.32 (12)
C6—C5—C4121.31 (14)C11—C12—H12123.8
C6—C5—H5119.3S2—C12—H12123.8
O2—S1—N1—N2178.54 (9)C3—C4—C5—C60.5 (2)
O1—S1—N1—N2−53.83 (11)C7—C4—C5—C6−179.24 (15)
C1—S1—N1—N262.38 (11)C2—C1—C6—C5−0.6 (2)
S1—N1—N2—C8−164.50 (11)S1—C1—C6—C5176.50 (12)
O2—S1—C1—C6163.60 (12)C4—C5—C6—C10.2 (2)
O1—S1—C1—C630.58 (14)N1—N2—C8—C9179.61 (12)
N1—S1—C1—C6−83.57 (13)N2—C8—C9—C10174.24 (14)
O2—S1—C1—C2−19.24 (14)N2—C8—C9—S2−9.0 (2)
O1—S1—C1—C2−152.26 (11)C12—S2—C9—C10−0.45 (12)
N1—S1—C1—C293.59 (12)C12—S2—C9—C8−177.63 (13)
C6—C1—C2—C30.2 (2)C8—C9—C10—C11177.28 (14)
S1—C1—C2—C3−176.95 (11)S2—C9—C10—C110.27 (16)
C1—C2—C3—C40.6 (2)C9—C10—C11—C120.12 (19)
C2—C3—C4—C5−1.0 (2)C10—C11—C12—S2−0.46 (18)
C2—C3—C4—C7178.80 (14)C9—S2—C12—C110.52 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.06 (1)2.874 (2)159 (2)

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2261).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography