PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1091.
Published online 2010 August 11. doi:  10.1107/S1600536810031302
PMCID: PMC3007897

A binuclear vanadium oxyfluoride: di-μ-oxido-bis­[(2,2′-bipyrid­yl)fluorido­oxidovanadium(V)]

Abstract

The title compound, [V2F2O4(C10H8N)2], is a centrosymmetric binuclear vanadium(V) species with the metal ions in a distorted octa­hedral environment. The coordination geometries of the symmetry-equivalent VV atoms are defined by cis-terminal fluoride and oxide groups, unsymmetrically bridging oxide groups and the N-atom donors of the bipyridyl ligand. The crystal packing is stabilized by weak inter­molecular C—H(...)O and C—H(...)F hydrogen bonds.

Related literature

For oxyfluorido­molybdates and -­vanadates, see: Adil et al. (2010 [triangle]); Burkholder & Zubieta (2004 [triangle]); DeBurgomaster & Zubieta (2010 [triangle]); Jones et al. (2010 [triangle]); Michailovski et al. (2006 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1091-scheme1.jpg

Experimental

Crystal data

  • [V2F2O4(C10H8N)2]
  • M r = 516.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1091-efi1.jpg
  • a = 9.7526 (6) Å
  • b = 12.6499 (8) Å
  • c = 16.023 (5) Å
  • β = 92.631 (5)°
  • V = 1974.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.00 mm−1
  • T = 90 K
  • 0.22 × 0.12 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.866, T max = 0.905
  • 9692 measured reflections
  • 2406 independent reflections
  • 2357 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.079
  • S = 1.13
  • 2406 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031302/om2351sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031302/om2351Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the National Science Foundation (CHE-0907787).

supplementary crystallographic information

Comment

Metal oxyfluorides have attracted considerable contemporary interest as a consequence of their compositional range and structural versatility and for properties such as magnetism, catalysis and non-linear optical behavior (Adil, et al. (2010); Burkholder & Zubieta (2004); DeBurgomaster & Zubieta (2010); Jones, et al. (2010); Michailovski, et al. (2006 and 2009). One approach to the preparation of novel metal oxyfluorides is the exploitation of hydrothermal chemistry where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures. Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(2,2'-bpy)2] was isolated.

The compound crystallizes in the monoclinic space group C2/c with four binuclear molecules per unit cell. The two halves of the binuclear unit are related by a center of symmetry at the mid-point of the V···V vector. The coordination geometry is distorted octahedral with {VFO3N} coordination (Fig. 1). The µ-bis-oxo bridging mode produces a V2O2 rhombus with alternating short-long V—O bond distances of 1.705 (1) Å and 2.293 (1) Å, respectively. The terminal oxo-groups rest in the plane of the V2O2 rhombus and exhibit a pronounced trans-influence on the elongated bridging oxo-group-vanadium distance, V1—O2. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.806 (1) Å with the V—F vector approximately normal to the V2O2 rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the V2O2 rhombus. The geometry is completed by the nitrogen donors of the 2,2'-bipyridine ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonding.

Experimental

A mixture of V2O5 (0.062 g, 0.34 mmol), 2,2'-bipyridine (0.320 g, 2.05 mmol), H2O (5 ml, 277.5 mmol) and HF (0.200 ml, 5.80 mmol) in the mole ratio 1.00:6.03:1620:17.06 was stirred briefly before heating to 170 °C for 48 h (initial and final pH values of 2.5 and 2.0, respectively). Yellow rods suitable for X-ray diffraction were isolated in 65% yield. Anal. Calcd. for C20H16F2N4O4V2: C, 46.5; H, 3.10; N, 10.8. Found: C, 46.3; H, 3.01; N, 11.0.

Refinement

All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecular dimer of the title compound, with the atom-labeling scheme and the displacement ellipsoids drawn at the 50% probability level. Color scheme: vanadium, orange; oxygen, red; fluorine, green; nitrogen, light blue; carbon, black; hydrogen, ...

Crystal data

[V2F2O4(C10H8N)2]F(000) = 1040.0
Mr = 516.25Dx = 1.737 Mg m3Dm = 1.74 (2) Mg m3Dm measured by flotation
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5752 reflections
a = 9.7526 (6) Åθ = 2.6–28.3°
b = 12.6499 (8) ŵ = 1.00 mm1
c = 16.023 (5) ÅT = 90 K
β = 92.631 (5)°Rod, yellow
V = 1974.7 (6) Å30.22 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer2406 independent reflections
Radiation source: fine-focus sealed tube2357 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.5°
[var phi] and ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −16→16
Tmin = 0.866, Tmax = 0.905l = −20→21
9692 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0314P)2 + 4.0741P] where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.10805 (3)1.04160 (2)0.066763 (17)0.01424 (10)
F1−0.01010 (11)1.03518 (8)0.15020 (6)0.0199 (2)
O10.21267 (13)1.13285 (10)0.10042 (8)0.0205 (3)
O2−0.01453 (12)0.90041 (9)0.01329 (7)0.0133 (2)
N10.20945 (14)0.90735 (11)0.13175 (9)0.0144 (3)
N20.25791 (14)0.97955 (11)−0.01525 (9)0.0142 (3)
C10.17578 (18)0.87555 (14)0.20780 (11)0.0176 (3)
H10.11060.91560.23670.021*
C20.23257 (18)0.78627 (14)0.24593 (11)0.0183 (3)
H20.20560.76500.29960.022*
C30.32950 (18)0.72849 (13)0.20438 (11)0.0185 (3)
H30.36960.66690.22900.022*
C40.36682 (18)0.76235 (14)0.12620 (11)0.0180 (3)
H40.43390.72480.09690.022*
C50.30457 (16)0.85198 (13)0.09144 (10)0.0137 (3)
C60.33609 (17)0.89567 (13)0.00892 (10)0.0144 (3)
C70.44046 (17)0.85774 (14)−0.03932 (11)0.0183 (3)
H70.49400.7985−0.02140.022*
C80.46484 (17)0.90815 (15)−0.11414 (11)0.0199 (4)
H80.53570.8839−0.14810.024*
C90.38475 (18)0.99419 (15)−0.13875 (11)0.0204 (4)
H90.40021.0299−0.18960.024*
C100.28181 (18)1.02718 (14)−0.08794 (11)0.0178 (3)
H100.22621.0856−0.10520.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.01400 (15)0.01331 (15)0.01525 (16)0.00446 (10)−0.00118 (10)−0.00316 (10)
F10.0225 (5)0.0227 (5)0.0148 (5)0.0086 (4)0.0030 (4)−0.0001 (4)
O10.0197 (6)0.0188 (6)0.0226 (6)0.0028 (5)−0.0028 (5)−0.0063 (5)
O20.0146 (5)0.0124 (5)0.0129 (5)0.0035 (4)0.0002 (4)−0.0001 (4)
N10.0134 (6)0.0154 (6)0.0140 (6)0.0032 (5)−0.0016 (5)−0.0015 (5)
N20.0132 (6)0.0160 (6)0.0134 (7)0.0011 (5)−0.0001 (5)−0.0018 (5)
C10.0180 (8)0.0197 (8)0.0150 (8)0.0044 (6)0.0000 (6)−0.0017 (6)
C20.0207 (8)0.0193 (8)0.0145 (8)0.0009 (6)−0.0010 (6)0.0004 (6)
C30.0218 (8)0.0130 (7)0.0201 (8)0.0030 (6)−0.0037 (7)0.0003 (6)
C40.0183 (8)0.0151 (8)0.0207 (8)0.0049 (6)0.0006 (6)−0.0015 (6)
C50.0128 (7)0.0140 (7)0.0139 (7)0.0009 (6)−0.0022 (6)−0.0028 (6)
C60.0140 (7)0.0140 (7)0.0150 (8)0.0002 (6)−0.0014 (6)−0.0033 (6)
C70.0152 (8)0.0188 (8)0.0208 (8)0.0032 (6)0.0011 (6)−0.0033 (6)
C80.0151 (8)0.0257 (9)0.0192 (8)0.0012 (7)0.0040 (6)−0.0050 (7)
C90.0182 (8)0.0258 (9)0.0173 (8)−0.0005 (7)0.0031 (6)0.0015 (7)
C100.0161 (8)0.0194 (8)0.0178 (8)0.0023 (6)0.0001 (6)0.0009 (6)

Geometric parameters (Å, °)

V1—O11.6167 (13)C2—H20.9500
V1—O2i1.7052 (12)C3—C41.388 (3)
V1—F11.8064 (11)C3—H30.9500
V1—N22.1576 (14)C4—C51.390 (2)
V1—N12.2027 (14)C4—H40.9500
V1—O22.2934 (12)C5—C61.478 (2)
V1—V1i3.1165 (6)C6—C71.391 (2)
N1—C11.338 (2)C7—C81.388 (3)
N1—C51.350 (2)C7—H70.9500
N2—C101.341 (2)C8—C91.386 (3)
N2—C61.353 (2)C8—H80.9500
C1—C21.387 (2)C9—C101.386 (2)
C1—H10.9500C9—H90.9500
C2—C31.389 (2)C10—H100.9500
O1—V1—O2i104.55 (6)N1—C1—H1118.8
O1—V1—F1101.51 (6)C2—C1—H1118.8
O2i—V1—F1103.81 (5)C1—C2—C3118.95 (16)
O1—V1—N291.61 (6)C1—C2—H2120.5
O2i—V1—N293.00 (5)C3—C2—H2120.5
F1—V1—N2155.14 (5)C4—C3—C2118.86 (16)
O1—V1—N197.47 (6)C4—C3—H3120.6
O2i—V1—N1154.20 (5)C2—C3—H3120.6
F1—V1—N184.45 (5)C3—C4—C5119.03 (16)
N2—V1—N172.87 (5)C3—C4—H4120.5
O1—V1—O2172.25 (6)C5—C4—H4120.5
O2i—V1—O278.60 (5)N1—C5—C4121.90 (16)
F1—V1—O284.39 (5)N1—C5—C6114.17 (14)
N2—V1—O281.09 (5)C4—C5—C6123.93 (15)
N1—V1—O277.95 (5)N2—C6—C7121.90 (16)
O1—V1—V1i150.07 (5)N2—C6—C5114.31 (14)
O2i—V1—V1i46.17 (4)C7—C6—C5123.74 (15)
F1—V1—V1i93.36 (4)C8—C7—C6118.69 (16)
N2—V1—V1i85.11 (4)C8—C7—H7120.7
N1—V1—V1i109.81 (4)C6—C7—H7120.7
O2—V1—V1i32.44 (3)C9—C8—C7119.33 (16)
V1i—O2—V1101.40 (5)C9—C8—H8120.3
C1—N1—C5118.83 (15)C7—C8—H8120.3
C1—N1—V1122.59 (11)C10—C9—C8118.90 (17)
C5—N1—V1118.50 (11)C10—C9—H9120.5
C10—N2—C6118.87 (15)C8—C9—H9120.5
C10—N2—V1121.00 (11)N2—C10—C9122.31 (16)
C6—N2—V1119.98 (11)N2—C10—H10118.8
N1—C1—C2122.42 (16)C9—C10—H10118.8
O2i—V1—O2—V1i0.0V1i—V1—N2—C6−112.39 (12)
F1—V1—O2—V1i105.34 (6)C5—N1—C1—C2−1.6 (3)
N2—V1—O2—V1i−94.91 (6)V1—N1—C1—C2175.09 (13)
N1—V1—O2—V1i−169.16 (6)N1—C1—C2—C31.0 (3)
O1—V1—N1—C191.27 (14)C1—C2—C3—C40.3 (3)
O2i—V1—N1—C1−120.14 (16)C2—C3—C4—C5−1.0 (3)
F1—V1—N1—C1−9.65 (13)C1—N1—C5—C40.9 (2)
N2—V1—N1—C1−179.35 (14)V1—N1—C5—C4−175.93 (12)
O2—V1—N1—C1−95.08 (13)C1—N1—C5—C6−178.60 (14)
V1i—V1—N1—C1−101.23 (13)V1—N1—C5—C64.58 (18)
O1—V1—N1—C5−92.04 (13)C3—C4—C5—N10.4 (3)
O2i—V1—N1—C556.55 (19)C3—C4—C5—C6179.83 (15)
F1—V1—N1—C5167.04 (12)C10—N2—C6—C70.1 (2)
N2—V1—N1—C5−2.66 (11)V1—N2—C6—C7−175.39 (12)
O2—V1—N1—C581.61 (12)C10—N2—C6—C5177.71 (14)
V1i—V1—N1—C575.46 (12)V1—N2—C6—C52.18 (18)
O1—V1—N2—C10−78.03 (14)N1—C5—C6—N2−4.3 (2)
O2i—V1—N2—C1026.64 (13)C4—C5—C6—N2176.19 (15)
F1—V1—N2—C10159.61 (13)N1—C5—C6—C7173.19 (15)
N1—V1—N2—C10−175.34 (14)C4—C5—C6—C7−6.3 (3)
O2—V1—N2—C10104.61 (13)N2—C6—C7—C80.3 (3)
V1i—V1—N2—C1072.17 (13)C5—C6—C7—C8−177.03 (15)
O1—V1—N2—C697.41 (13)C6—C7—C8—C9−0.2 (3)
O2i—V1—N2—C6−157.93 (12)C7—C8—C9—C10−0.3 (3)
F1—V1—N2—C6−25.0 (2)C6—N2—C10—C9−0.7 (3)
N1—V1—N2—C60.09 (12)V1—N2—C10—C9174.79 (13)
O2—V1—N2—C6−79.96 (12)C8—C9—C10—N20.8 (3)

Symmetry codes: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···F1ii0.952.593.493 (2)160.
C2—H2···O1iii0.952.423.161 (2)134.
C3—H3···F1iv0.952.433.050 (2)123.
C3—H3···F1iii0.952.863.760 (2)159.
C4—H4···O2v0.952.523.407 (2)155.
C4—H4···F1iv0.952.603.131 (2)116.
C7—H7···O2v0.952.533.366 (2)147.

Symmetry codes: (ii) −x, y, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, y−1/2, z; (v) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2351).

References

  • Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993. [PubMed]
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.
  • DeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909. [PMC free article] [PubMed]
  • Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O’Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun.13, 491–494.
  • Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des.9, 755–765.
  • Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem.45, 5641–5652. [PubMed]
  • Palmer, D. (2006). CrystalMaker CrystalMaker Software Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography