PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1127–m1128.
Published online 2010 August 18. doi:  10.1107/S1600536810032472
PMCID: PMC3007895

{3-Methyl-2-[(1-oxido-2-naphth­yl)methyl­idene­amino-κ2 O,N]butano­ato-κO}(1H-pyrazole-κN 2)nickel(II)

Abstract

In either of the two independent mol­ecules within the asymmetric unit of the title compound, [Ni(C16H15NO3)(C3H4N2)], the NiII atom is coordinated by the two N atoms and two O atoms in a distorted square-planar geometry. The crystal packing is stabilized by strong and weak inter­molecular C—H(...)O hydrogen bonds, as well as weak centroid–centroid π-stacking inter­actions [centroid–centroid separation = 3.526 (3) Å].

Related literature

For complexes of Schiff base ligands composed of salicyl­aldehyde, 2-formyl­pyridine or their analogues, see: Li et al. (2010 [triangle]); Vergopoulos et al. (1993 [triangle]); Usman et al. (2003 [triangle]). For related structures, see: Basu Baul et al. (2007 [triangle]); Ebel & Rehder (2003 [triangle]); Maniukiewicz & Bukowska-Strzyżewska (2001 [triangle]); Xue et al. (2009 [triangle]); Qiu et al. (2008 [triangle]). For the synthesis, see: Plesch et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1127-scheme1.jpg

Experimental

Crystal data

  • [Ni(C16H15NO3)(C3H4N2)]
  • M r = 396.08
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1127-efi1.jpg
  • a = 11.5089 (11) Å
  • b = 16.6194 (16) Å
  • c = 18.9934 (19) Å
  • V = 3632.9 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 296 K
  • 0.30 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.735, T max = 0.772
  • 18967 measured reflections
  • 6400 independent reflections
  • 4910 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.108
  • S = 1.02
  • 6400 reflections
  • 473 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.36 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2792 Friedel pairs
  • Flack parameter: −0.015 (16)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)
Table 3
Weak CgCg inter­molecular inter­actions of (I) (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032472/jj2044sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032472/jj2044Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the National Sciences Foundation of China (grant No. 20877036) and the Top-Class Foundation of Pingdingshan University (grant Nos. 2008012 and 2009001).

supplementary crystallographic information

Comment

Complexes of Shiff base ligands composed of salicylaldehyde, 2-formylpyidine or their analogues, and α-amino acid always have attracted attention due to the important biomolecules–α-amino acid and manifold structure (Vergopoulos et al., 1993; Usman et al., 2003; Li et al., 2010). Several structural studies have been performed on Shiff base transition metal complex derived from 1-hydroxy-2-naphthaldehyde and α-amino acid (Ebel et al., 2003; Qiu et al., 2008; Xue et al., 2009). We report here the crystal structure of the title NiIIcomplex, (I), [Ni(C16H15N1O3)(C3H4N2)].

In the title complex, the NiIIatom is in a distorted square-planar coordination geometry (Fig. 1; table 1). Three basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an O–N–O donor set, with the fourth position occupied by one N atom from the pyrazole ligand.

The dihedral angle between the mean planes of the naphthalene and pyrazole rings is 16.(7)°. Strong and weak intermolecular C—H···O hydrogen bonds (Fig. 2; Table 2) and weak Cg···Cgπ-stacking interactions [shortest centroid-centroid separation = 3.526 (3) Å] contribute to crystal packing (Table 3).

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol and 5 ml of water was added 2-Hydroxy-1-naphthaldehyde (1.00 mmol in 10 ml of methanol) dropwise.The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to Ni (II) nitrate Hexahydrate (1.00 mmol) and pyrazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 4.0 h at 333 K. The brown solution was filtered and left for several days, brown crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement

In (I), All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å (NH) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The structure of the title compound, (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
A view of the crystal packing. Hydrogen bonds are shown as red dashed lines.

Crystal data

[Ni(C16H15NO3)(C3H4N2)]F(000) = 1648
Mr = 396.08Dx = 1.448 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4302 reflections
a = 11.5089 (11) Åθ = 2.4–21.1°
b = 16.6194 (16) ŵ = 1.09 mm1
c = 18.9934 (19) ÅT = 296 K
V = 3632.9 (6) Å3Block, brown
Z = 80.30 × 0.30 × 0.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer6400 independent reflections
Radiation source: fine-focus sealed tube4910 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −11→13
Tmin = 0.735, Tmax = 0.772k = −19→19
18967 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0469P)2 + 0.9539P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6400 reflectionsΔρmax = 0.53 e Å3
473 parametersΔρmin = −0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 2792 Friedel pairs [PLEASE CHECK]
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.015 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.75779 (5)0.07571 (3)0.05529 (3)0.04451 (17)
Ni20.29080 (5)0.80826 (3)0.31116 (3)0.04473 (17)
C10.5662 (4)0.1225 (3)0.1366 (3)0.0445 (12)
C20.4616 (4)0.1673 (3)0.1395 (3)0.0560 (13)
H20.43540.19330.09920.067*
C30.3991 (5)0.1734 (3)0.1993 (3)0.0598 (14)
H30.32850.20050.19860.072*
C40.4389 (5)0.1392 (3)0.2630 (3)0.0532 (14)
C50.3769 (5)0.1514 (3)0.3268 (3)0.0623 (15)
H50.30640.17870.32600.075*
C60.4201 (6)0.1231 (3)0.3901 (3)0.0672 (16)
H60.37920.13170.43160.081*
C70.5240 (5)0.0821 (3)0.3912 (3)0.0588 (14)
H70.55360.06330.43370.071*
C80.5844 (5)0.0688 (3)0.3298 (2)0.0531 (13)
H80.65370.04010.33180.064*
C90.5449 (4)0.0969 (3)0.2639 (3)0.0432 (12)
C100.6076 (4)0.0857 (3)0.1986 (2)0.0402 (10)
C110.7082 (4)0.0369 (2)0.1959 (2)0.0435 (11)
H110.72950.01020.23690.052*
C120.8739 (4)−0.0294 (3)0.1441 (2)0.0464 (12)
H120.9156−0.02000.18830.056*
C130.9522 (5)−0.0079 (3)0.0842 (3)0.0482 (12)
C140.8356 (5)−0.1181 (3)0.1417 (3)0.0567 (14)
H140.7791−0.12530.17980.068*
C150.7731 (6)−0.1393 (3)0.0738 (3)0.0812 (18)
H15A0.8284−0.14280.03610.122*
H15B0.7170−0.09830.06320.122*
H15C0.7344−0.19000.07910.122*
C160.9363 (6)−0.1746 (4)0.1576 (4)0.092 (2)
H16A0.9917−0.17230.11990.139*
H16B0.9077−0.22860.16220.139*
H16C0.9731−0.15850.20070.139*
N30.6506 (5)0.1453 (3)−0.0732 (3)0.0952 (18)
H3A0.58390.1544−0.05440.114*
C180.7893 (4)0.1369 (2)−0.1493 (2)0.0391 (10)
H180.83200.1392−0.19090.047*
C190.8288 (5)0.1139 (3)−0.0877 (3)0.0563 (14)
H190.90490.0974−0.07990.068*
C200.1022 (4)0.7048 (3)0.2868 (3)0.0452 (12)
C210.0003 (5)0.6677 (3)0.3148 (3)0.0568 (13)
H21−0.02420.68060.36010.068*
C22−0.0608 (5)0.6140 (3)0.2766 (3)0.0648 (16)
H22−0.12640.59050.29640.078*
C23−0.0286 (5)0.5921 (3)0.2073 (3)0.0541 (14)
C24−0.0923 (5)0.5350 (3)0.1676 (4)0.0743 (18)
H24−0.15840.51200.18740.089*
C25−0.0604 (6)0.5130 (4)0.1024 (4)0.086 (2)
H25−0.10320.47480.07770.103*
C260.0366 (6)0.5477 (4)0.0724 (4)0.0798 (19)
H260.05830.53340.02690.096*
C270.1015 (5)0.6029 (3)0.1087 (3)0.0609 (15)
H270.16630.62530.08710.073*
C280.0734 (4)0.6266 (3)0.1773 (3)0.0484 (12)
C290.1375 (4)0.6856 (3)0.2179 (2)0.0426 (11)
C300.2362 (4)0.7240 (2)0.1880 (2)0.0407 (10)
H300.25590.70990.14220.049*
C310.4015 (4)0.8117 (3)0.1815 (2)0.0440 (11)
H310.44160.76870.15580.053*
C320.4824 (5)0.8441 (3)0.2381 (2)0.0444 (11)
C330.3714 (5)0.8798 (3)0.1293 (3)0.0627 (16)
H330.44630.90120.11340.075*
C340.3129 (8)0.8482 (5)0.0640 (3)0.119 (3)
H34A0.24020.82380.07660.179*
H34B0.36200.80890.04200.179*
H34C0.29930.89180.03190.179*
C350.3109 (6)0.9496 (3)0.1654 (3)0.086 (2)
H35A0.29570.99130.13170.130*
H35B0.35970.97030.20220.130*
H35C0.23880.93130.18530.130*
N60.2387 (6)0.8183 (3)0.4640 (3)0.1060 (19)
H6A0.19600.77590.46660.127*
C370.3311 (4)0.9271 (3)0.4934 (2)0.0412 (11)
H370.36090.97040.51860.049*
C380.3433 (4)0.9138 (3)0.4260 (3)0.0578 (14)
H380.38610.94710.39640.069*
N10.7731 (3)0.0262 (2)0.14102 (18)0.0418 (9)
N20.7483 (4)0.1169 (2)−0.03787 (18)0.0473 (9)
C170.6775 (6)0.1564 (3)−0.1422 (3)0.0676 (17)
H170.62770.1741−0.17750.081*
N40.3010 (3)0.7767 (2)0.21896 (18)0.0425 (9)
N50.2891 (4)0.8490 (2)0.40427 (19)0.0480 (10)
C360.2692 (7)0.8680 (4)0.5186 (3)0.086 (2)
H360.24920.86080.56560.103*
O10.6178 (3)0.1191 (2)0.07517 (16)0.0529 (9)
O20.9049 (3)0.03658 (19)0.03564 (16)0.0501 (8)
O31.0518 (3)−0.0330 (2)0.07990 (19)0.0621 (10)
O40.1546 (3)0.7567 (2)0.32823 (16)0.0541 (9)
O50.4362 (3)0.8548 (2)0.29918 (17)0.0534 (9)
O60.5840 (3)0.8613 (2)0.22488 (17)0.0587 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0446 (4)0.0483 (3)0.0407 (3)0.0047 (3)0.0006 (3)0.0060 (3)
Ni20.0416 (4)0.0469 (3)0.0456 (3)−0.0031 (3)0.0020 (3)−0.0033 (3)
C10.042 (3)0.041 (3)0.050 (3)0.001 (2)0.003 (2)−0.002 (2)
C20.047 (3)0.059 (3)0.062 (3)0.008 (3)−0.003 (3)0.004 (3)
C30.046 (3)0.053 (3)0.081 (4)0.012 (3)0.006 (3)0.001 (3)
C40.057 (4)0.041 (3)0.061 (3)−0.003 (3)0.012 (3)−0.004 (3)
C50.054 (3)0.054 (3)0.079 (4)0.002 (3)0.022 (3)−0.013 (3)
C60.085 (5)0.058 (3)0.059 (4)−0.008 (3)0.020 (3)−0.005 (3)
C70.070 (4)0.059 (3)0.048 (3)−0.006 (3)0.011 (3)0.000 (3)
C80.058 (3)0.051 (3)0.051 (3)−0.003 (3)0.004 (3)0.001 (2)
C90.046 (3)0.033 (2)0.050 (3)−0.004 (2)0.005 (2)−0.002 (2)
C100.033 (2)0.039 (2)0.048 (3)0.001 (2)0.000 (2)0.003 (2)
C110.047 (3)0.046 (2)0.038 (2)−0.007 (2)−0.004 (2)0.001 (2)
C120.038 (3)0.055 (3)0.047 (3)0.003 (2)0.004 (2)0.008 (2)
C130.045 (3)0.048 (3)0.051 (3)0.001 (3)−0.005 (2)0.008 (2)
C140.045 (3)0.051 (3)0.074 (4)0.005 (3)0.018 (3)0.013 (3)
C150.084 (5)0.066 (3)0.094 (4)−0.007 (4)0.009 (4)−0.008 (3)
C160.073 (4)0.072 (4)0.132 (6)0.027 (4)0.030 (4)0.038 (4)
N30.086 (4)0.104 (4)0.096 (4)0.024 (3)−0.001 (3)0.011 (3)
C180.043 (3)0.045 (2)0.030 (2)0.007 (2)0.004 (2)0.0113 (18)
C190.046 (3)0.054 (3)0.069 (4)0.004 (3)0.005 (3)0.009 (3)
C200.041 (3)0.041 (3)0.054 (3)0.003 (2)−0.001 (2)0.001 (2)
C210.050 (3)0.063 (3)0.057 (3)−0.002 (3)0.011 (3)0.005 (3)
C220.047 (3)0.057 (3)0.091 (5)−0.008 (3)0.006 (3)0.001 (3)
C230.045 (3)0.044 (3)0.073 (4)0.002 (2)−0.003 (3)−0.001 (3)
C240.054 (4)0.065 (4)0.104 (5)−0.018 (3)0.007 (4)−0.012 (4)
C250.068 (5)0.081 (4)0.108 (6)−0.025 (4)−0.003 (4)−0.033 (4)
C260.072 (4)0.084 (4)0.084 (5)−0.015 (4)0.000 (4)−0.028 (4)
C270.048 (3)0.065 (3)0.070 (4)−0.011 (3)−0.003 (3)−0.014 (3)
C280.041 (3)0.043 (3)0.061 (3)0.000 (2)−0.005 (2)−0.002 (2)
C290.035 (3)0.037 (2)0.057 (3)0.003 (2)−0.002 (2)0.003 (2)
C300.042 (3)0.035 (2)0.045 (2)0.005 (2)−0.006 (2)−0.0049 (19)
C310.043 (3)0.047 (2)0.043 (3)−0.001 (2)0.007 (2)0.000 (2)
C320.043 (3)0.043 (3)0.047 (3)−0.003 (2)−0.001 (2)0.006 (2)
C330.072 (4)0.065 (4)0.051 (3)−0.013 (3)−0.018 (3)0.007 (3)
C340.147 (7)0.124 (6)0.086 (5)0.000 (6)−0.034 (5)0.026 (4)
C350.096 (5)0.057 (3)0.106 (5)0.001 (4)−0.033 (4)0.017 (3)
N60.127 (5)0.101 (4)0.090 (4)−0.023 (4)0.026 (4)0.006 (3)
C370.035 (3)0.049 (3)0.040 (3)−0.013 (2)0.003 (2)−0.014 (2)
C380.043 (3)0.060 (3)0.071 (4)−0.006 (3)0.004 (3)−0.006 (3)
N10.039 (2)0.042 (2)0.045 (2)0.0053 (19)0.0007 (19)0.0027 (16)
N20.041 (2)0.053 (2)0.048 (2)0.008 (2)0.000 (2)0.0066 (17)
C170.089 (5)0.078 (4)0.035 (3)0.002 (4)−0.001 (3)0.021 (3)
N40.037 (2)0.0382 (19)0.052 (2)0.0037 (19)0.0017 (19)0.0009 (17)
N50.048 (3)0.046 (2)0.050 (2)−0.007 (2)0.009 (2)−0.0032 (18)
C360.111 (6)0.106 (5)0.041 (3)0.004 (5)−0.008 (4)−0.021 (3)
O10.051 (2)0.064 (2)0.0435 (19)0.0131 (18)0.0023 (16)0.0064 (16)
O20.042 (2)0.059 (2)0.050 (2)0.0077 (17)0.0079 (16)0.0131 (16)
O30.038 (2)0.077 (2)0.072 (3)0.009 (2)0.0085 (17)0.026 (2)
O40.053 (2)0.057 (2)0.053 (2)−0.0091 (18)0.0068 (17)−0.0074 (17)
O50.042 (2)0.071 (2)0.047 (2)−0.0090 (18)−0.0001 (16)−0.0069 (17)
O60.040 (2)0.082 (2)0.055 (2)−0.0127 (19)0.0029 (17)0.0037 (18)

Geometric parameters (Å, °)

Ni1—O11.805 (3)C18—H180.9300
Ni1—N11.833 (3)C19—N21.325 (6)
Ni1—O21.852 (3)C19—H190.9300
Ni1—N21.900 (3)C20—O41.313 (5)
Ni2—O41.816 (3)C20—C291.406 (6)
Ni2—N41.832 (4)C20—C211.428 (7)
Ni2—O51.857 (3)C21—C221.349 (7)
Ni2—N51.894 (4)C21—H210.9300
C1—O11.311 (5)C22—C231.415 (7)
C1—C101.410 (6)C22—H220.9300
C1—C21.417 (7)C23—C241.417 (7)
C2—C31.347 (7)C23—C281.425 (7)
C2—H20.9300C24—C251.343 (8)
C3—C41.413 (7)C24—H240.9300
C3—H30.9300C25—C261.380 (8)
C4—C91.408 (7)C25—H250.9300
C4—C51.420 (7)C26—C271.368 (7)
C5—C61.384 (8)C26—H260.9300
C5—H50.9300C27—C281.400 (7)
C6—C71.377 (8)C27—H270.9300
C6—H60.9300C28—C291.449 (6)
C7—C81.374 (7)C29—C301.421 (6)
C7—H70.9300C30—N41.292 (5)
C8—C91.412 (7)C30—H300.9300
C8—H80.9300C31—N41.477 (6)
C9—C101.446 (6)C31—C321.522 (7)
C10—C111.415 (6)C31—C331.543 (7)
C11—N11.294 (5)C31—H310.9800
C11—H110.9300C32—O61.230 (6)
C12—N11.484 (6)C32—O51.288 (5)
C12—C131.496 (7)C33—C341.505 (8)
C12—C141.540 (7)C33—C351.517 (8)
C12—H120.9800C33—H330.9800
C13—O31.222 (6)C34—H34A0.9600
C13—O21.300 (5)C34—H34B0.9600
C14—C151.519 (7)C34—H34C0.9600
C14—C161.521 (7)C35—H35A0.9600
C14—H140.9800C35—H35B0.9600
C15—H15A0.9600C35—H35C0.9600
C15—H15B0.9600N6—C361.372 (7)
C15—H15C0.9600N6—N51.372 (6)
C16—H16A0.9600N6—H6A0.8600
C16—H16B0.9600C37—C361.304 (8)
C16—H16C0.9600C37—C381.307 (6)
N3—C171.359 (7)C37—H370.9300
N3—N21.393 (6)C38—N51.312 (6)
N3—H3A0.8600C38—H380.9300
C18—C191.312 (6)C17—H170.9300
C18—C171.334 (7)C36—H360.9300
O1—Ni1—N194.55 (15)C20—C21—H21119.6
O1—Ni1—O2176.92 (16)C21—C22—C23122.3 (5)
N1—Ni1—O286.20 (15)C21—C22—H22118.8
O1—Ni1—N289.98 (16)C23—C22—H22118.8
N1—Ni1—N2173.95 (16)C22—C23—C24122.0 (5)
O2—Ni1—N289.49 (16)C22—C23—C28118.9 (5)
O4—Ni2—N495.23 (16)C24—C23—C28119.0 (5)
O4—Ni2—O5174.97 (15)C25—C24—C23122.1 (6)
N4—Ni2—O586.79 (16)C25—C24—H24119.0
O4—Ni2—N589.59 (16)C23—C24—H24119.0
N4—Ni2—N5174.72 (17)C24—C25—C26119.2 (6)
O5—Ni2—N588.58 (16)C24—C25—H25120.4
O1—C1—C10124.9 (4)C26—C25—H25120.4
O1—C1—C2116.3 (4)C27—C26—C25120.9 (6)
C10—C1—C2118.8 (4)C27—C26—H26119.5
C3—C2—C1121.7 (5)C25—C26—H26119.5
C3—C2—H2119.1C26—C27—C28122.2 (5)
C1—C2—H2119.1C26—C27—H27118.9
C2—C3—C4121.2 (5)C28—C27—H27118.9
C2—C3—H3119.4C27—C28—C23116.6 (5)
C4—C3—H3119.4C27—C28—C29124.7 (5)
C9—C4—C3119.5 (5)C23—C28—C29118.6 (5)
C9—C4—C5119.7 (5)C20—C29—C30120.1 (4)
C3—C4—C5120.7 (5)C20—C29—C28120.1 (4)
C6—C5—C4120.8 (5)C30—C29—C28119.8 (4)
C6—C5—H5119.6N4—C30—C29125.7 (4)
C4—C5—H5119.6N4—C30—H30117.1
C7—C6—C5119.6 (5)C29—C30—H30117.1
C7—C6—H6120.2N4—C31—C32106.1 (4)
C5—C6—H6120.2N4—C31—C33115.0 (4)
C8—C7—C6120.4 (5)C32—C31—C33109.4 (4)
C8—C7—H7119.8N4—C31—H31108.7
C6—C7—H7119.8C32—C31—H31108.7
C7—C8—C9122.4 (5)C33—C31—H31108.7
C7—C8—H8118.8O6—C32—O5123.0 (4)
C9—C8—H8118.8O6—C32—C31121.3 (4)
C4—C9—C8117.1 (5)O5—C32—C31115.7 (4)
C4—C9—C10119.1 (4)C34—C33—C35115.7 (6)
C8—C9—C10123.8 (4)C34—C33—C31111.9 (5)
C1—C10—C11119.6 (4)C35—C33—C31111.9 (4)
C1—C10—C9119.4 (4)C34—C33—H33105.5
C11—C10—C9120.9 (4)C35—C33—H33105.5
N1—C11—C10125.5 (4)C31—C33—H33105.5
N1—C11—H11117.3C33—C34—H34A109.5
C10—C11—H11117.3C33—C34—H34B109.5
N1—C12—C13107.0 (4)H34A—C34—H34B109.5
N1—C12—C14111.9 (4)C33—C34—H34C109.5
C13—C12—C14112.3 (4)H34A—C34—H34C109.5
N1—C12—H12108.5H34B—C34—H34C109.5
C13—C12—H12108.5C33—C35—H35A109.5
C14—C12—H12108.5C33—C35—H35B109.5
O3—C13—O2122.7 (5)H35A—C35—H35B109.5
O3—C13—C12122.3 (4)C33—C35—H35C109.5
O2—C13—C12115.0 (4)H35A—C35—H35C109.5
C15—C14—C16112.8 (5)H35B—C35—H35C109.5
C15—C14—C12112.4 (4)C36—N6—N5107.1 (5)
C16—C14—C12111.5 (5)C36—N6—H6A126.5
C15—C14—H14106.5N5—N6—H6A126.5
C16—C14—H14106.5C36—C37—C38106.9 (5)
C12—C14—H14106.5C36—C37—H37126.5
C14—C15—H15A109.5C38—C37—H37126.5
C14—C15—H15B109.5C37—C38—N5113.3 (5)
H15A—C15—H15B109.5C37—C38—H38123.3
C14—C15—H15C109.5N5—C38—H38123.3
H15A—C15—H15C109.5C11—N1—C12120.3 (4)
H15B—C15—H15C109.5C11—N1—Ni1126.8 (3)
C14—C16—H16A109.5C12—N1—Ni1112.9 (3)
C14—C16—H16B109.5C19—N2—N3103.4 (4)
H16A—C16—H16B109.5C19—N2—Ni1127.7 (3)
C14—C16—H16C109.5N3—N2—Ni1128.1 (4)
H16A—C16—H16C109.5C18—C17—N3106.5 (5)
H16B—C16—H16C109.5C18—C17—H17126.7
C17—N3—N2109.1 (5)N3—C17—H17126.7
C17—N3—H3A125.4C30—N4—C31120.0 (4)
N2—N3—H3A125.4C30—N4—Ni2126.3 (3)
C19—C18—C17108.3 (5)C31—N4—Ni2113.5 (3)
C19—C18—H18125.8C38—N5—N6104.2 (4)
C17—C18—H18125.8C38—N5—Ni2125.6 (4)
C18—C19—N2112.6 (5)N6—N5—Ni2130.0 (3)
C18—C19—H19123.7C37—C36—N6108.4 (5)
N2—C19—H19123.7C37—C36—H36125.8
O4—C20—C29125.0 (4)N6—C36—H36125.8
O4—C20—C21115.9 (4)C1—O1—Ni1127.4 (3)
C29—C20—C21119.1 (4)C13—O2—Ni1116.1 (3)
C22—C21—C20120.9 (5)C20—O4—Ni2126.8 (3)
C22—C21—H21119.6C32—O5—Ni2115.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.593.476 (6)159.
C14—H14···O6ii0.982.423.318 (6)153.
C18—H18···O6iii0.931.872.798 (5)178.
C37—H37···O3iv0.931.852.756 (5)163.

Symmetry codes: (i) −x+3/2, −y, z+1/2; (ii) x, y−1, z; (iii) −x+3/2, −y+1, z−1/2; (iv) −x+3/2, −y+1, z+1/2.

Table 3 Weak Cg-Cg intermolecular interactions of (I) (Å)

distanceCg1—Cg10Cg3—Cg9Cg4—Cg7Cg4—Cg9
centroid-centroid distance3.940 (3)3.709 (2)3.526 (3)3.932 (3)

Notes: CgI—CgJ = centroid-centroid distance between Plane I and J (Å); Cg1: Ni1/O2/C13/C12/N1; Cg3: Ni1/O1/C1/C10/C11/N1; Cg4: C1/C2/C3/C4/C9/C10; Cg7: Ni2/O5/C32/C31/N4; Cg9: Ni2/O4/C20/C29/C30/N4; Cg10: C20/C21/C22/C23/C28/C29.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2044).

References

  • Basu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., HolApek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ebel, M. & Rehder, D. (2003). Inorg. Chim. Acta, 356, 210–214.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516. [PMC free article] [PubMed]
  • Maniukiewicz, W. & Bukowska-Strzyżewska, M. (2001). Acta Cryst. C57, 889–890. [PubMed]
  • Plesch, G., Friebel, C., Warda, S. A., Sivý J. & Svajlenova, O. (1997). Transition Met. Chem.22, 433–440.
  • Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  • Vergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem.32, 1844–1849.
  • Xue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, m1237. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography