PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2254.
Published online 2010 August 11. doi:  10.1107/S1600536810030990
PMCID: PMC3007886

8-Hy­droxy­quinolinium 2-carb­oxy­acetate

Abstract

In the title compound, C9H8NO+·C3H3O4 , the cation and anion are each essentially planar, with maximum deviations of 0.043 (1) and 0.060 (1) Å, respectively. The dihedral angle between these two planes is 2.20 (4)°. The conformation of the anion is stabilized by an intra­molecular O—H(...)O hydrogen bond, which forms an S(6) ring motif. The hy­droxy group of the oxine unit makes a hydrogen bond with the one of the O atoms of the carboxyl­ate group of the 2-carb­oxy­acetate anion. Two other carboxyl­ate O atoms form R 2 2(7) ring motifs via inter­molecular C—H(...)O and N—H(...)O hydrogen bonds. The crystal structure is consolidated by weak inter­molecular C—H(...)O inter­actions, which link the cations and anions into a three-dimensional network.

Related literature

For background to and the biological activity of oxines, see: Balasubramanian & Muthiah (1996a [triangle],b [triangle]). For related structures, see: Banerjee et al. (1984 [triangle]); Loh et al. (2010 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2254-scheme1.jpg

Experimental

Crystal data

  • C9H8NO+·C3H3O4
  • M r = 249.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2254-efi1.jpg
  • a = 8.7089 (4) Å
  • b = 5.2930 (2) Å
  • c = 23.4672 (9) Å
  • β = 90.999 (3)°
  • V = 1081.58 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100 K
  • 0.52 × 0.17 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.929, T max = 0.992
  • 12061 measured reflections
  • 3170 independent reflections
  • 2552 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.118
  • S = 1.04
  • 3170 reflections
  • 207 parameters
  • All H-atom parameters refined
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030990/bt5313sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030990/bt5313Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ and WSL also thank USM for the award of USM fellowships and HM also thanks USM for the award of a postdoctoral fellowship.

supplementary crystallographic information

Comment

Recently, much attention has been devoted to the design and synthesis of supramolecular architectures assembled via various weak noncovalent interactions in the crystal structures of oxines (8-hydroxyquinoline), their derivatives and their complexes in a variety of crystalline environments (Balasubramanian & Muthiah, 1996a,b). Oxine is widely used as analytical reagent. The present study is aimed at understanding the hydrogen-bonding networks in the title compound, (I).

The asymmetric unit of title compound, (Fig. 1), consists of a 8-hydroxyquinolinium cation and a 2-carboxyacetate anion. 8-Hydroxyquinolinium is protonated at atom N1 leading to an enhancement of the internal angle [122.14 (11)°] at C1—N1—C2 compared with neutral quinoline moieties (Banerjee et al., 1984). The 8-hydroxyquinolinium cation and 2-carboxyacetate anion are essentially planar, with a maximum deviation of 0.043 (1) Å for atom C8 and 0.060 (1) Å for atom C11, respectively. The diheral angle between these two planes is 2.20 (4)°, indicating they are approximately parallel to each other. The anion is stabilized by an intramolecular O2–H1O2···O4 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the solid state (Fig. 2), carboxylate oxygen atoms (O4 and O5) form R22(7) ring motifs via intermolecular C2–H2A···O4 and N1–H1N1···O5 hydrogen bonds. The hydroxy group (O1–H1O1) of the oxine moiety makes a hydrogen bond with the O5 atom of the carboxylate group of the 2-carboxyacetate anion. The crystal structure is consolidated by weak intermolecular C2–H2A···O2 and C6–H6A···O3 interactions. The cations and anions are linked by these interactions into three-dimensional network.

Experimental

A hot methanol solution (20 ml) of 8-hydroxyquinolinine (29 mg, Merck) and malonic acid (20.8 mg, Acros) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interaction is shown in dashed line.
Fig. 2.
The crystal structure of the title compound viewed along the b axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C9H8NO+·C3H3O4F(000) = 520
Mr = 249.22Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3422 reflections
a = 8.7089 (4) Åθ = 3.5–30.0°
b = 5.2930 (2) ŵ = 0.12 mm1
c = 23.4672 (9) ÅT = 100 K
β = 90.999 (3)°Plate, yellow
V = 1081.58 (8) Å30.52 × 0.17 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3170 independent reflections
Radiation source: fine-focus sealed tube2552 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→12
Tmin = 0.929, Tmax = 0.992k = −7→7
12061 measured reflectionsl = −33→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.04w = 1/[σ2(Fo2) + (0.0618P)2 + 0.2285P] where P = (Fo2 + 2Fc2)/3
3170 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.09573 (11)0.85826 (16)0.23539 (4)0.0178 (2)
N10.16598 (13)0.89411 (19)0.12400 (4)0.0152 (2)
C10.23458 (14)0.7104 (2)0.15690 (5)0.0142 (2)
C20.19403 (16)0.9186 (2)0.06877 (5)0.0183 (3)
C30.29489 (16)0.7560 (3)0.04150 (5)0.0204 (3)
C40.36509 (16)0.5673 (2)0.07247 (5)0.0201 (3)
C50.33690 (14)0.5386 (2)0.13142 (5)0.0165 (2)
C60.40592 (15)0.3468 (2)0.16573 (6)0.0193 (3)
C70.37370 (15)0.3379 (2)0.22279 (6)0.0193 (3)
C80.27372 (15)0.5121 (2)0.24808 (5)0.0172 (2)
C90.19971 (14)0.6941 (2)0.21562 (5)0.0144 (2)
O20.79886 (13)0.74847 (19)0.03808 (4)0.0268 (2)
O30.66717 (12)0.95987 (18)0.10240 (4)0.0237 (2)
O40.96190 (11)0.38081 (17)0.06705 (4)0.0208 (2)
O50.97057 (11)0.25359 (16)0.15766 (3)0.0177 (2)
C100.75145 (15)0.7864 (2)0.09062 (5)0.0176 (2)
C110.80638 (16)0.5972 (2)0.13524 (5)0.0195 (3)
C120.92134 (14)0.3958 (2)0.11786 (5)0.0155 (2)
H1O10.073 (2)0.817 (4)0.2748 (9)0.042 (5)*
H1O20.866 (3)0.602 (4)0.0417 (9)0.057 (6)*
H1N10.098 (2)1.015 (4)0.1398 (8)0.037 (5)*
H2A0.141 (2)1.051 (3)0.0516 (7)0.022 (4)*
H3A0.3100 (19)0.781 (3)0.0005 (7)0.023 (4)*
H4A0.437 (2)0.447 (3)0.0560 (7)0.027 (4)*
H6A0.4720 (18)0.226 (3)0.1476 (7)0.019 (4)*
H7A0.4224 (19)0.207 (3)0.2466 (7)0.024 (4)*
H8A0.2547 (19)0.505 (3)0.2888 (7)0.020 (4)*
H11A0.716 (2)0.510 (4)0.1503 (8)0.039 (5)*
H11B0.852 (2)0.689 (4)0.1680 (8)0.035 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0235 (5)0.0173 (4)0.0128 (4)0.0039 (4)0.0051 (3)0.0010 (3)
N10.0187 (5)0.0143 (4)0.0128 (5)−0.0006 (4)0.0020 (4)−0.0003 (4)
C10.0153 (6)0.0129 (5)0.0146 (5)−0.0014 (4)0.0013 (4)−0.0008 (4)
C20.0229 (7)0.0186 (6)0.0135 (5)−0.0009 (5)0.0017 (4)0.0008 (4)
C30.0242 (7)0.0240 (6)0.0130 (5)−0.0009 (5)0.0041 (5)−0.0016 (5)
C40.0201 (7)0.0213 (6)0.0191 (6)0.0009 (5)0.0047 (5)−0.0045 (5)
C50.0159 (6)0.0160 (5)0.0178 (6)−0.0018 (4)0.0017 (4)−0.0016 (4)
C60.0170 (6)0.0161 (5)0.0248 (6)0.0015 (5)0.0016 (5)−0.0018 (5)
C70.0180 (6)0.0160 (5)0.0239 (6)0.0005 (5)−0.0007 (5)0.0035 (5)
C80.0186 (6)0.0169 (5)0.0160 (5)−0.0024 (5)0.0007 (4)0.0019 (4)
C90.0161 (6)0.0136 (5)0.0137 (5)−0.0022 (4)0.0023 (4)0.0002 (4)
O20.0417 (7)0.0242 (5)0.0146 (4)0.0117 (4)0.0046 (4)0.0025 (4)
O30.0263 (5)0.0216 (5)0.0232 (5)0.0067 (4)0.0009 (4)−0.0014 (4)
O40.0293 (5)0.0205 (4)0.0127 (4)0.0049 (4)0.0051 (3)0.0001 (3)
O50.0228 (5)0.0175 (4)0.0128 (4)0.0018 (3)0.0023 (3)0.0008 (3)
C100.0197 (6)0.0170 (5)0.0160 (5)0.0001 (5)0.0005 (4)−0.0009 (4)
C110.0241 (7)0.0211 (6)0.0132 (5)0.0055 (5)0.0040 (5)0.0008 (4)
C120.0178 (6)0.0149 (5)0.0139 (5)−0.0023 (4)0.0015 (4)−0.0013 (4)

Geometric parameters (Å, °)

O1—C91.3434 (15)C6—H6A0.963 (17)
O1—H1O10.97 (2)C7—C81.4066 (18)
N1—C21.3295 (15)C7—H7A0.981 (17)
N1—C11.3722 (15)C8—C91.3811 (17)
N1—H1N10.95 (2)C8—H8A0.973 (16)
C1—C51.4132 (17)O2—C101.3223 (15)
C1—C91.4187 (16)O2—H1O20.97 (2)
C2—C31.3933 (18)O3—C101.2107 (16)
C2—H2A0.928 (17)O4—C121.2521 (14)
C3—C41.3727 (19)O5—C121.2683 (14)
C3—H3A0.982 (16)C10—C111.5198 (17)
C4—C51.4174 (17)C11—C121.5231 (17)
C4—H4A0.977 (18)C11—H11A0.98 (2)
C5—C61.4222 (17)C11—H11B0.990 (19)
C6—C71.3736 (18)
C9—O1—H1O1109.3 (12)C6—C7—C8121.81 (12)
C2—N1—C1122.14 (11)C6—C7—H7A119.1 (10)
C2—N1—H1N1116.1 (11)C8—C7—H7A119.1 (10)
C1—N1—H1N1121.7 (11)C9—C8—C7120.74 (11)
N1—C1—C5119.31 (10)C9—C8—H8A118.7 (10)
N1—C1—C9119.40 (10)C7—C8—H8A120.5 (10)
C5—C1—C9121.28 (11)O1—C9—C8124.86 (11)
N1—C2—C3121.04 (12)O1—C9—C1116.96 (10)
N1—C2—H2A113.5 (10)C8—C9—C1118.17 (11)
C3—C2—H2A125.5 (10)C10—O2—H1O2103.7 (13)
C4—C3—C2119.00 (11)O3—C10—O2121.90 (12)
C4—C3—H3A123.3 (10)O3—C10—C11121.81 (11)
C2—C3—H3A117.6 (10)O2—C10—C11116.29 (11)
C3—C4—C5120.77 (12)C10—C11—C12118.50 (10)
C3—C4—H4A123.2 (10)C10—C11—H11A108.4 (12)
C5—C4—H4A116.1 (10)C12—C11—H11A107.4 (12)
C1—C5—C4117.72 (11)C10—C11—H11B109.3 (11)
C1—C5—C6118.88 (11)C12—C11—H11B107.1 (11)
C4—C5—C6123.40 (12)H11A—C11—H11B105.5 (16)
C7—C6—C5119.01 (12)O4—C12—O5124.50 (11)
C7—C6—H6A122.8 (9)O4—C12—C11119.80 (11)
C5—C6—H6A118.2 (9)O5—C12—C11115.70 (10)
C2—N1—C1—C5−0.90 (18)C5—C6—C7—C80.37 (19)
C2—N1—C1—C9−179.97 (11)C6—C7—C8—C92.3 (2)
C1—N1—C2—C30.34 (19)C7—C8—C9—O1175.89 (11)
N1—C2—C3—C40.4 (2)C7—C8—C9—C1−3.83 (18)
C2—C3—C4—C5−0.5 (2)N1—C1—C9—O12.09 (16)
N1—C1—C5—C40.71 (17)C5—C1—C9—O1−176.97 (11)
C9—C1—C5—C4179.77 (11)N1—C1—C9—C8−178.17 (11)
N1—C1—C5—C6−179.22 (11)C5—C1—C9—C82.77 (18)
C9—C1—C5—C6−0.16 (18)O3—C10—C11—C12−175.64 (12)
C3—C4—C5—C1−0.01 (19)O2—C10—C11—C125.39 (18)
C3—C4—C5—C6179.92 (13)C10—C11—C12—O4−3.81 (18)
C1—C5—C6—C7−1.42 (18)C10—C11—C12—O5175.62 (11)
C4—C5—C6—C7178.66 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O5i0.97 (2)1.67 (2)2.6439 (12)178.1 (14)
O2—H1O2···O40.97 (2)1.55 (2)2.4963 (14)162 (2)
N1—H1N1···O5ii0.95 (2)1.74 (2)2.6809 (14)170.9 (17)
C2—H2A···O4ii0.928 (16)2.373 (17)3.1735 (15)144.4 (14)
C2—H2A···O2iii0.928 (16)2.423 (16)3.0663 (15)126.5 (13)
C6—H6A···O3iv0.964 (16)2.462 (16)3.4202 (16)172.5 (13)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y+1, z; (iii) −x+1, −y+2, −z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5313).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Balasubramanian, T. P. & Thomas Muthiah, P. (1996a). Acta Cryst. C52, 1017–1019. [PubMed]
  • Balasubramanian, T. & Muthiah, P. T. (1996b). Acta Cryst. C52, 2072–2073.
  • Banerjee, T., Basak, A. K., Mazumdar, S. K. & Chaudhuri, S. (1984). Acta Cryst. C40, 507–509.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91–o92. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography