PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2342.
Published online 2010 August 18. doi:  10.1107/S1600536810031983
PMCID: PMC3007877

2-Hy­droxy­ethanaminium 2,4-dinitro­phenolate hemihydrate

Abstract

In the title salt, C2H8NO+·C6H3N2O5 ·0.5H2O, the anions, cations and water mol­ecules are linked via N—H(...)O and O—H(...)O hydrogen bonds, forming a three-dimensionl network.

Related literature

For comparable structures, see: Goddard et al. (2002 [triangle]); Iwasaki & Kawano (1977 [triangle]); Kunnert et al. (1995 [triangle]); Rais & Bergman (2004 [triangle]); Sieler et al. (1994 [triangle]); Yuan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2342-scheme1.jpg

Experimental

Crystal data

  • C2H8NO+·C6H3N2O5 ·0.5H2O
  • M r = 254.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2342-efi1.jpg
  • a = 24.5688 (4) Å
  • b = 10.5945 (2) Å
  • c = 8.4238 (2) Å
  • V = 2192.67 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 153 K
  • 0.56 × 0.45 × 0.33 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • 20722 measured reflections
  • 2686 independent reflections
  • 2646 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.066
  • S = 1.00
  • 2686 reflections
  • 357 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: RAPID-AUTO (Rigaku/MSC, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031983/bt5319sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031983/bt5319Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As shown in Fig. 1, compound (I) consists of two crystallographically independent ionic O+—H···O- hydrogen bonding (Table 2) pairs of ethanolammonium DNPL (A and B for containing O1 and O6, respectively), and one water molecule. The ion pairs of A and B are asociated via the water molecule by a N—H···O hydrogen bonds (Table 2).

Following analysis shows the the feature of quinoic-phenolic resonance of DNPL in ionic pairs A. The C1—C6 and C1—C2 bond lengths are extremely longer than the normal length (1.38 Å), and the C3—C4 bond length is abviously longer than the normal length. The C2—C3 bond length is the shortest one in DNPL, and is slightly shorter than the normal one (Table 1). The N1—C6 [1.4416 (16) Å] and N2—C4 [1.4478 (17) Å] bond lengths are obviously shorter than that observed in 2,4-dinitrophenol [1.484 (5) Å, Iwasaki & Kawano, 1977]. The C1—O1 bond length [1.2671 (16) Å] is shorter than that of phenolates, 1.317 (4)Å for a naphtholate (Yuan et al., 2005), 1.283 (2)–1.331 (6)Å for phenolates in different compounds (Sieler et al., 1994; Kunnert et al., 1995; Goddard et al., 2002; Rais et al., 2004).

The nitro groups of the DNPL at C2 and C4 are twisted relatively to the aromatic ring with dihedral angles lesser than about 4°, which are indicated by torsion angles in Table 2. This twist of the nitro group relative to the benzene ring is a result of the participation of nitro O atoms in O—H···O hydrogen bonds (Table 2).

The N—H···O and O—H···O hydrogen bonding in the structure leads to a three-dimensional hydrogen-bonded netwerk (Table 2). As shown in Fig. 2, the water molecule acts as well a hydrogen-bond donor for DNPL anion and ethanolammonium cation. Furthermore, the DNPL anions are linked to ethanolammonium cations via various hydrogen bonds of N—H···O (Table 2 & Fig. 2).

Experimental

Admixture of ethanolamine, DNP and water in the molar ratio of 2:1:1 were heated to a temperature where clear solutions resulted. The cystals of (I) were formed by making the resulting solutions standing overnight at 293k.

Refinement

The H atoms bonded to N and O were taken from a difference fourier map, and were refined. Others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.95 (phenyl), 0.99 (methylene), with Uiso(H) values 1.2 times Ueq of the parent atoms.

Figures

Fig. 1.
The cell unit of (I) with atom labels, showing 40% probability displacement ellipsoids. Hydrogen bonds are illustrated as thin lines.
Fig. 2.
A diagram of crystal packing viewed down along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C2H8NO+·C6H3N2O5·0.5H2OF(000) = 1064
Mr = 254.20Dx = 1.540 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 20146 reflections
a = 24.5688 (4) Åθ = 3.1–27.5°
b = 10.5945 (2) ŵ = 0.14 mm1
c = 8.4238 (2) ÅT = 153 K
V = 2192.67 (8) Å3Prism, yellow
Z = 80.56 × 0.45 × 0.33 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2646 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.018
graphiteθmax = 27.5°, θmin = 3.1°
ω scansh = −31→31
20722 measured reflectionsk = −13→13
2686 independent reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066w = 1/[σ2(Fo2) + (0.0506P)2 + 0.256P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2686 reflectionsΔρmax = 0.25 e Å3
357 parametersΔρmin = −0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0213 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.40970 (4)0.16257 (9)0.70708 (14)0.0246 (2)
O20.15648 (4)0.16118 (13)0.7433 (2)0.0436 (4)
O30.17398 (5)0.31833 (12)0.89817 (19)0.0390 (3)
O40.35318 (5)0.43069 (14)1.0234 (2)0.0489 (4)
O50.42268 (4)0.35022 (10)0.91162 (16)0.0300 (3)
O60.38672 (4)0.63686 (10)0.71654 (14)0.0262 (2)
O70.13452 (4)0.69048 (12)0.70476 (19)0.0384 (3)
O80.15347 (5)0.83799 (13)0.87468 (18)0.0407 (3)
O90.33436 (4)0.93189 (10)1.00421 (14)0.0292 (2)
O100.40336 (4)0.83871 (10)0.89816 (14)0.0265 (2)
O110.46306 (4)0.03331 (10)0.49735 (13)0.0236 (2)
O120.45349 (4)0.58299 (10)0.47171 (13)0.0220 (2)
N10.37306 (4)0.35618 (10)0.92905 (16)0.0211 (2)
N20.18870 (5)0.23265 (12)0.81025 (19)0.0276 (3)
N30.35365 (5)0.85094 (10)0.91370 (14)0.0194 (2)
N40.16743 (5)0.75211 (13)0.78413 (18)0.0270 (3)
N50.56485 (5)0.01705 (10)0.68611 (15)0.0185 (2)
N60.53325 (5)0.39558 (11)0.44028 (16)0.0218 (2)
C10.35954 (5)0.17880 (12)0.73496 (16)0.0175 (2)
C20.31902 (6)0.09935 (12)0.66134 (18)0.0224 (3)
H20.33080.03300.59380.027*
C30.26441 (6)0.11540 (13)0.68459 (19)0.0236 (3)
H30.23900.06150.63350.028*
C40.24637 (6)0.21292 (11)0.78519 (17)0.0210 (3)
C50.28234 (5)0.29052 (12)0.86297 (18)0.0202 (3)
H50.26940.35520.93140.024*
C60.33790 (5)0.27319 (12)0.84031 (16)0.0176 (3)
C70.33707 (5)0.66684 (12)0.73307 (15)0.0186 (3)
C80.29498 (6)0.59359 (13)0.65700 (19)0.0243 (3)
H80.30540.52410.59260.029*
C90.24074 (6)0.61971 (12)0.67346 (19)0.0249 (3)
H90.21430.56870.62200.030*
C100.22461 (5)0.72307 (13)0.76756 (18)0.0217 (3)
C110.26181 (5)0.79730 (12)0.84427 (16)0.0194 (3)
H110.25020.86630.90780.023*
C120.31712 (5)0.77025 (12)0.82799 (16)0.0180 (3)
C130.54204 (6)−0.08272 (12)0.58103 (18)0.0209 (3)
H13A0.5540−0.16660.61910.025*
H13B0.5561−0.07110.47180.025*
C140.48060 (6)−0.07767 (13)0.57902 (19)0.0233 (3)
H14A0.4660−0.15350.52510.028*
H14B0.4666−0.07670.68920.028*
C150.48229 (6)0.39280 (14)0.34614 (19)0.0273 (3)
H15A0.47200.30400.32510.033*
H15B0.48860.43460.24270.033*
C160.43622 (5)0.45829 (13)0.4314 (2)0.0246 (3)
H16A0.40370.46210.36210.029*
H16B0.42650.41100.52880.029*
O130.51234 (4)0.26120 (9)0.71903 (13)0.0197 (2)
H0A0.4788 (9)0.249 (2)0.732 (3)0.036 (5)*
H0B0.5255 (8)0.3027 (19)0.797 (3)0.029 (5)*
H5A0.5523 (9)0.088 (2)0.673 (3)0.037 (6)*
H5B0.6013 (9)0.0271 (17)0.667 (3)0.031 (5)*
H5C0.5571 (8)−0.0081 (19)0.788 (3)0.028 (5)*
H6A0.5286 (8)0.3495 (18)0.533 (3)0.024 (4)*
H6B0.5606 (10)0.366 (2)0.386 (3)0.041 (6)*
H6C0.5420 (8)0.4771 (19)0.461 (3)0.028 (5)*
H11O0.4426 (10)0.078 (2)0.555 (4)0.042 (6)*
H12O0.4350 (10)0.610 (2)0.537 (4)0.044 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0164 (4)0.0285 (5)0.0289 (5)0.0015 (3)0.0016 (4)−0.0118 (4)
O20.0166 (5)0.0491 (7)0.0652 (10)−0.0100 (5)−0.0046 (6)−0.0124 (7)
O30.0200 (5)0.0422 (6)0.0548 (8)0.0079 (4)0.0030 (5)−0.0084 (6)
O40.0238 (5)0.0577 (8)0.0653 (9)0.0005 (5)0.0029 (6)−0.0452 (8)
O50.0154 (4)0.0274 (5)0.0472 (7)−0.0029 (4)0.0007 (5)−0.0153 (5)
O60.0180 (4)0.0364 (5)0.0242 (5)0.0073 (4)−0.0034 (4)−0.0102 (5)
O70.0173 (5)0.0440 (6)0.0539 (8)−0.0048 (4)−0.0075 (5)−0.0008 (7)
O80.0223 (5)0.0569 (7)0.0429 (7)0.0128 (5)0.0000 (5)−0.0094 (7)
O90.0240 (5)0.0303 (5)0.0333 (6)0.0067 (4)−0.0053 (5)−0.0156 (5)
O100.0158 (4)0.0313 (5)0.0326 (6)−0.0033 (4)0.0014 (4)−0.0080 (5)
O110.0221 (4)0.0288 (5)0.0199 (5)0.0050 (4)0.0004 (4)−0.0066 (4)
O120.0188 (4)0.0221 (5)0.0250 (5)−0.0002 (4)0.0048 (4)−0.0013 (4)
N10.0164 (5)0.0197 (5)0.0274 (6)0.0004 (4)0.0000 (5)−0.0073 (5)
N20.0151 (5)0.0309 (6)0.0368 (7)−0.0006 (4)−0.0012 (5)−0.0004 (6)
N30.0184 (5)0.0197 (5)0.0199 (6)0.0016 (4)−0.0014 (5)−0.0019 (4)
N40.0160 (5)0.0330 (6)0.0319 (7)0.0020 (5)−0.0023 (5)0.0046 (5)
N50.0168 (5)0.0181 (5)0.0206 (6)0.0016 (4)0.0013 (4)0.0027 (4)
N60.0210 (5)0.0191 (5)0.0253 (6)0.0023 (4)0.0065 (5)0.0015 (5)
C10.0167 (5)0.0178 (5)0.0178 (6)0.0003 (4)0.0000 (5)−0.0013 (5)
C20.0221 (6)0.0198 (6)0.0253 (7)−0.0014 (5)−0.0010 (5)−0.0060 (5)
C30.0206 (6)0.0226 (6)0.0275 (7)−0.0052 (5)−0.0036 (6)−0.0027 (6)
C40.0129 (5)0.0231 (5)0.0269 (7)−0.0009 (5)0.0001 (5)0.0014 (5)
C50.0159 (6)0.0204 (5)0.0242 (7)0.0016 (4)0.0007 (5)−0.0024 (5)
C60.0155 (5)0.0173 (5)0.0201 (6)−0.0015 (4)0.0000 (5)−0.0028 (5)
C70.0182 (6)0.0218 (6)0.0160 (6)0.0028 (5)−0.0025 (5)−0.0009 (5)
C80.0242 (7)0.0217 (6)0.0269 (7)0.0024 (5)−0.0064 (6)−0.0065 (5)
C90.0223 (7)0.0219 (5)0.0304 (8)−0.0016 (5)−0.0080 (6)−0.0019 (6)
C100.0155 (6)0.0250 (6)0.0245 (7)0.0014 (5)−0.0021 (5)0.0032 (5)
C110.0167 (6)0.0221 (5)0.0195 (6)0.0037 (4)−0.0009 (5)0.0001 (5)
C120.0162 (6)0.0197 (5)0.0179 (6)0.0008 (4)−0.0018 (5)−0.0012 (5)
C130.0242 (6)0.0182 (5)0.0203 (6)0.0026 (5)0.0045 (5)−0.0009 (5)
C140.0230 (6)0.0238 (6)0.0231 (7)−0.0047 (5)0.0040 (5)−0.0030 (6)
C150.0287 (7)0.0279 (6)0.0253 (7)0.0012 (5)0.0016 (6)−0.0055 (6)
C160.0187 (6)0.0240 (6)0.0310 (8)−0.0036 (5)0.0015 (5)−0.0012 (6)
O130.0156 (4)0.0214 (4)0.0220 (5)−0.0015 (3)0.0009 (4)−0.0011 (4)

Geometric parameters (Å, °)

O1—C11.2661 (16)C2—C31.3665 (19)
O2—N21.2322 (18)C2—H20.9500
O3—N21.2261 (19)C3—C41.408 (2)
O4—N11.2223 (17)C3—H30.9500
O5—N11.2293 (15)C4—C51.3734 (19)
O6—C71.2683 (16)C5—C61.3905 (17)
O7—N41.2357 (19)C5—H50.9500
O8—N41.236 (2)C7—C121.4421 (18)
O9—N31.2417 (15)C7—C81.4429 (18)
O10—N31.2351 (15)C8—C91.3680 (19)
O11—C141.4288 (17)C8—H80.9500
O11—H11O0.84 (3)C9—C101.409 (2)
O12—C161.4285 (17)C9—H90.9500
O12—H12O0.77 (3)C10—C111.3681 (18)
N1—C61.4416 (16)C11—C121.3955 (17)
N2—C41.4478 (17)C11—H110.9500
N3—C121.4345 (17)C13—C141.5105 (19)
N4—C101.4449 (16)C13—H13A0.9900
N5—C131.4882 (18)C13—H13B0.9900
N5—H5A0.82 (2)C14—H14A0.9900
N5—H5B0.92 (2)C14—H14B0.9900
N5—H5C0.92 (2)C15—C161.510 (2)
N6—C151.4824 (19)C15—H15A0.9900
N6—H6A0.93 (2)C15—H15B0.9900
N6—H6B0.87 (3)C16—H16A0.9900
N6—H6C0.91 (2)C16—H16B0.9900
C1—C61.4388 (18)O13—H0A0.84 (2)
C1—C21.4438 (18)O13—H0B0.85 (2)
C14—O11—H11O111.2 (18)O6—C7—C12125.31 (12)
C16—O12—H12O109.9 (18)O6—C7—C8120.39 (12)
O4—N1—O5120.48 (12)C12—C7—C8114.28 (11)
O4—N1—C6119.45 (11)C9—C8—C7122.97 (13)
O5—N1—C6120.06 (11)C9—C8—H8118.5
O3—N2—O2122.82 (13)C7—C8—H8118.5
O3—N2—C4118.92 (12)C8—C9—C10119.23 (12)
O2—N2—C4118.25 (13)C8—C9—H9120.4
O10—N3—O9121.00 (11)C10—C9—H9120.4
O10—N3—C12120.19 (11)C11—C10—C9121.64 (12)
O9—N3—C12118.81 (11)C11—C10—N4118.79 (12)
O7—N4—O8122.78 (13)C9—C10—N4119.57 (13)
O7—N4—C10118.13 (13)C10—C11—C12119.09 (12)
O8—N4—C10119.08 (13)C10—C11—H11120.5
C13—N5—H5A115.5 (17)C12—C11—H11120.5
C13—N5—H5B110.1 (13)C11—C12—N3115.94 (12)
H5A—N5—H5B103.6 (19)C11—C12—C7122.78 (12)
C13—N5—H5C105.7 (13)N3—C12—C7121.28 (11)
H5A—N5—H5C108 (2)N5—C13—C14110.97 (11)
H5B—N5—H5C113.8 (18)N5—C13—H13A109.4
C15—N6—H6A109.6 (12)C14—C13—H13A109.4
C15—N6—H6B111.3 (16)N5—C13—H13B109.4
H6A—N6—H6B110 (2)C14—C13—H13B109.4
C15—N6—H6C108.8 (13)H13A—C13—H13B108.0
H6A—N6—H6C111.6 (19)O11—C14—C13109.63 (11)
H6B—N6—H6C105 (2)O11—C14—H14A109.7
O1—C1—C6124.65 (12)C13—C14—H14A109.7
O1—C1—C2120.82 (12)O11—C14—H14B109.7
C6—C1—C2114.53 (11)C13—C14—H14B109.7
C3—C2—C1122.89 (12)H14A—C14—H14B108.2
C3—C2—H2118.6N6—C15—C16111.68 (13)
C1—C2—H2118.6N6—C15—H15A109.3
C2—C3—C4119.12 (12)C16—C15—H15A109.3
C2—C3—H3120.4N6—C15—H15B109.3
C4—C3—H3120.4C16—C15—H15B109.3
C5—C4—C3121.60 (12)H15A—C15—H15B107.9
C5—C4—N2118.28 (12)O12—C16—C15108.38 (11)
C3—C4—N2120.12 (12)O12—C16—H16A110.0
C4—C5—C6119.15 (12)C15—C16—H16A110.0
C4—C5—H5120.4O12—C16—H16B110.0
C6—C5—H5120.4C15—C16—H16B110.0
C5—C6—C1122.63 (12)H16A—C16—H16B108.4
C5—C6—N1115.89 (11)H0A—O13—H0B111 (2)
C1—C6—N1121.48 (11)
O1—C1—C2—C3−178.24 (14)C12—C7—C8—C9−0.1 (2)
C6—C1—C2—C32.5 (2)C7—C8—C9—C100.5 (2)
C1—C2—C3—C4−0.4 (2)C8—C9—C10—C11−0.7 (2)
C2—C3—C4—C5−1.4 (2)C8—C9—C10—N4179.33 (14)
C2—C3—C4—N2179.31 (13)O7—N4—C10—C11174.57 (14)
O3—N2—C4—C50.8 (2)O8—N4—C10—C11−4.5 (2)
O2—N2—C4—C5−178.37 (15)O7—N4—C10—C9−5.4 (2)
O3—N2—C4—C3−179.87 (15)O8—N4—C10—C9175.54 (14)
O2—N2—C4—C31.0 (2)C9—C10—C11—C120.4 (2)
C3—C4—C5—C60.7 (2)N4—C10—C11—C12−179.61 (12)
N2—C4—C5—C6−179.92 (13)C10—C11—C12—N3−179.11 (12)
C4—C5—C6—C11.6 (2)C10—C11—C12—C70.1 (2)
C4—C5—C6—N1−178.49 (12)O10—N3—C12—C11−175.46 (12)
O1—C1—C6—C5177.64 (13)O9—N3—C12—C115.19 (18)
C2—C1—C6—C5−3.1 (2)O10—N3—C12—C75.35 (19)
O1—C1—C6—N1−2.2 (2)O9—N3—C12—C7−174.00 (13)
C2—C1—C6—N1177.00 (12)O6—C7—C12—C11−178.70 (13)
O4—N1—C6—C53.9 (2)C8—C7—C12—C11−0.2 (2)
O5—N1—C6—C5−177.39 (13)O6—C7—C12—N30.4 (2)
O4—N1—C6—C1−176.23 (15)C8—C7—C12—N3178.91 (12)
O5—N1—C6—C12.5 (2)N5—C13—C14—O1169.73 (14)
O6—C7—C8—C9178.49 (14)N6—C15—C16—O1254.43 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H11O···O10.84 (3)1.76 (3)2.5914 (14)168 (3)
O12—H12O···O60.77 (3)1.94 (3)2.6963 (16)166 (3)
O13—H0A···O10.84 (2)1.94 (2)2.7315 (13)156 (2)
O13—H0A···O50.84 (2)2.31 (2)2.8938 (15)127 (2)
O13—H0B···O12i0.85 (2)1.97 (2)2.8214 (15)171 (2)
N5—H5B···O9ii0.92 (2)2.13 (2)2.9620 (15)150 (2)
N5—H5C···O11iii0.92 (2)1.85 (2)2.7620 (16)171 (2)
N5—H5A···O130.82 (2)2.11 (2)2.9038 (14)161 (2)
N6—H6C···O5ii0.91 (2)2.07 (2)2.9127 (16)155 (2)
N6—H6B···O6ii0.87 (3)1.93 (3)2.7453 (17)155 (2)
N6—H6B···O10ii0.87 (3)2.34 (2)2.9517 (16)127 (2)
N6—H6A···O130.93 (2)1.87 (2)2.7937 (17)175 (2)

Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) −x+1, −y+1, z−1/2; (iii) −x+1, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5319).

References

  • Goddard, R., Herzog, H. M. & Reetz, M. T. (2002). Tetrahedron, 58, 7847–7853.
  • Iwasaki, F. & Kawano, Y. (1977). Acta Cryst. B33, 2455–2459.
  • Kunnert, M., Zahn, G. & Sieler, J. (1995). Z. Anorg. Allg. Chem.621, 1597–1582.
  • Rais, D. & Bergman, R. G. (2004). Chem. Eur. J.10, 3970–3974.
  • Rigaku/MSC (2004). RAPID-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sieler, J., Pink, M. & Zahn, G. (1994). Z. Anorg. Allg. Chem.620, 743–746.
  • Yuan, J.-X., Shen, Z.-L., Li, L., Song, X.-Y. & Jin, Z.-M. (2005). Acta Cryst. E61, o3712–o3714.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography