PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2237–o2238.
Published online 2010 August 11. doi:  10.1107/S1600536810030862
PMCID: PMC3007871

Nicotinaldehyde [2,8-bis­(trifluoro­meth­yl)quinolin-4-yl]hydrazone monohydrate

Abstract

In the title compound, C17H10F6N4·H2O, the pyridine ring is not coplanar with the quinoline ring system; the dihedral angle between the two planes is 21.3 (1)°. One of the trifluoro­methyl group is disordered over two orientations with occupancies of 0.70 (1) and 0.30 (1). The water mol­ecule is disordered over two positions with occupancies of 0.76 (1) and 0.24 (1). In the crystal, the water mol­ecule is linked to the main mol­ecule via N—H(...)O and C—H(...)O hydrogen bonds, and inversion-related pairs are linked via O—H(...)N hydrogen bonds. In addition, a weak π–π inter­action is observed between the pyridine ring and the pyridine ring of the quinoline unit, with a centroid–centroid distance of 3.650 (2) Å.

Related literature

For general background to quinolines, see: Mao et al. (2009 [triangle]); Bermudez et al. (2004 [triangle]); Jayaprakash et al. (2006 [triangle]); Andries et al. (2005 [triangle]). For related structures, see: Al-eryani et al. (2010 [triangle]); Skörska et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2237-scheme1.jpg

Experimental

Crystal data

  • C17H10F6N4·H2O
  • M r = 402.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2237-efi1.jpg
  • a = 21.103 (4) Å
  • b = 15.120 (3) Å
  • c = 12.537 (3) Å
  • β = 118.633 (3)°
  • V = 3511.1 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 295 K
  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: ψ scan (SADABS; Bruker, 2001 [triangle]) T min = 0.975, T max = 0.983
  • 13267 measured reflections
  • 3416 independent reflections
  • 2309 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.169
  • S = 1.04
  • 3416 reflections
  • 301 parameters
  • 54 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810030862/ci5125sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030862/ci5125Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST, India, for the funding under DST–FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore.

supplementary crystallographic information

Comment

2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is a popular antimalarial drug. It also possesses important structural features required for antimicrobial activity (Mao et al. 2009; Bermudez et al. 2004; Jayaprakash et al. 2006). Quinoline is an essential structural unit found in mefloquin and recently developed antimycobacterial drugs (Andries et al. 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations we have synthesized few quinoline derivatives, in which a hydrazone group has been attached at the 4th position of the mefloquin ring system, expecting that these newly designed molecules would exhibit some antibacterial activity. The crystal structures of the mefloquine base and its salt complexes have been reported (Skörska et al. 2005). Earlier, we reported the crystal structure of 3,4-dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone (Al-eryani et al., 2010). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone molecule and one water molecule (Fig. 1). The dihedral angle [21.3 (1)°] between the quinoline ring system and the pyridine ring indicates that these two systems are non coplanar.

In the crystal structure, intermolecular O—H···N, N—H···O and C—H···O hydrogen bonds (Table 1) are observed. In addition, a weak π–π interaction is observed between N4/C13–C17 pyridine ring at (-x, y, 1/2-z) and N1/C1–C5 pyridine ring of quinoline at (x,y,z), with a centroid-centroid distance of 3.650 (3) Å.

Experimental

A mixture of [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazine (10 mmol) and nicotinaldehyde (10 mmol) in glacial acetic acid (50 ml) was heated at reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled, and the obtained solid hydrazone was filtered, washed with water and cold ethanol. The crude product was purified by column chromatography. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol-water solution at room temperature.

Refinement

One of the trifluoromethyl group is disordered over two orientations with occupancies of 0.702 (8) and 0.298 (8). The C—F distances involving disordered F atoms were restrained to be equal and Uij parameters of these atoms were restrained to an approximate isotropic behaviour. The water molecule is disordered over two positions with occupancies of 0.758 (13) and 0.242 (13); the H atoms of the major disorder component were located in a difference map and refined with O–H and H···H distances of 0.84 (2) and 1.35 (2) Å, respectively. Due to disorder of the oxygen atom in water molecule, all H atoms could not be located. The N-bound H atom was located in a difference map and refined freely. The remaining H atoms were positioned at calculated positions [C–H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder components are shown. Dashed lines indicate hydrogen bonds.

Crystal data

C17H10F6N4·H2OF(000) = 1632
Mr = 402.31Dx = 1.522 Mg m3
Monoclinic, C2/cMelting point: 486 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.103 (4) ÅCell parameters from 3416 reflections
b = 15.120 (3) Åθ = 1.7–26.0°
c = 12.537 (3) ŵ = 0.14 mm1
β = 118.633 (3)°T = 295 K
V = 3511.1 (13) Å3Plate, colourless
Z = 80.22 × 0.15 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer3416 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
graphiteRint = 0.035
ω and [var phi] scansθmax = 26.0°, θmin = 1.7°
Absorption correction: ψ scan (SADABS; Bruker, 2001)h = −26→24
Tmin = 0.975, Tmax = 0.983k = −18→18
13267 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0764P)2 + 2.423P] where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.26 e Å3
54 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F1A0.5904 (2)−0.0211 (2)0.5513 (4)0.0998 (17)0.702 (8)
F2A0.6589 (4)−0.0445 (5)0.4831 (7)0.136 (3)0.702 (8)
F3A0.5538 (5)−0.0032 (4)0.3634 (5)0.175 (4)0.702 (8)
F1B0.6012 (6)−0.0127 (6)0.3579 (8)0.091 (3)0.298 (8)
F2B0.5395 (6)0.0067 (8)0.4374 (17)0.130 (5)0.298 (8)
F3B0.6570 (7)−0.0477 (7)0.5238 (10)0.110 (6)0.298 (8)
F40.80847 (12)0.08843 (14)0.83893 (19)0.0933 (7)
F50.71855 (14)0.12394 (18)0.8610 (2)0.1087 (8)
F60.81994 (15)0.18889 (16)0.96395 (17)0.1198 (10)
N10.68113 (12)0.11985 (15)0.6073 (2)0.0554 (6)
N20.61107 (14)0.31173 (19)0.3332 (2)0.0623 (7)
N30.56960 (13)0.28345 (17)0.2162 (2)0.0607 (7)
N40.42311 (17)0.3601 (2)−0.1996 (3)0.0905 (10)
C10.63497 (15)0.10370 (18)0.4929 (2)0.0558 (7)
C20.60955 (15)0.16393 (18)0.3984 (2)0.0550 (7)
H20.57660.14680.31980.066*
C30.63410 (14)0.24976 (18)0.4233 (2)0.0509 (7)
C40.68355 (14)0.27268 (18)0.5461 (2)0.0505 (7)
C50.70505 (14)0.20455 (17)0.6345 (2)0.0499 (7)
C60.75344 (16)0.22617 (19)0.7576 (2)0.0581 (8)
C70.77952 (18)0.3094 (2)0.7890 (3)0.0692 (9)
H70.81180.32220.86980.083*
C80.75865 (18)0.3761 (2)0.7019 (3)0.0729 (9)
H80.77690.43300.72480.087*
C90.71174 (17)0.35831 (19)0.5837 (3)0.0641 (8)
H90.69800.40350.52650.077*
C100.6071 (2)0.0102 (2)0.4681 (3)0.0809 (11)
C110.7746 (2)0.1574 (2)0.8540 (3)0.0750 (10)
C120.54235 (17)0.3419 (2)0.1340 (3)0.0699 (9)
H120.54890.40150.15460.084*
C130.50072 (17)0.3156 (2)0.0070 (3)0.0639 (8)
C140.49612 (17)0.2291 (2)−0.0322 (3)0.0662 (9)
H140.52090.18430.02320.079*
C150.45503 (19)0.2098 (2)−0.1525 (3)0.0755 (10)
H150.45080.1519−0.17980.091*
C160.4200 (2)0.2770 (3)−0.2323 (3)0.0813 (11)
H160.39260.2631−0.31420.098*
C170.4624 (2)0.3780 (2)−0.0816 (3)0.0893 (12)
H170.46420.4364−0.05700.107*
O1W0.6581 (3)0.4946 (2)0.3473 (4)0.088 (2)0.758 (13)
H1W0.631 (3)0.537 (3)0.315 (6)0.132*0.758 (13)
H2W0.695 (2)0.498 (4)0.341 (7)0.132*0.758 (13)
O2W0.6032 (15)0.5042 (8)0.3654 (12)0.119 (10)0.242 (13)
H2N0.6237 (16)0.368 (2)0.345 (3)0.065 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F1A0.121 (3)0.070 (2)0.112 (3)−0.0409 (19)0.059 (3)−0.0055 (18)
F2A0.200 (6)0.079 (4)0.169 (7)0.015 (3)0.120 (5)−0.009 (4)
F3A0.186 (6)0.087 (3)0.093 (3)−0.068 (4)−0.062 (3)0.022 (3)
F1B0.098 (6)0.065 (4)0.089 (6)−0.019 (5)0.027 (5)−0.040 (4)
F2B0.117 (8)0.105 (7)0.198 (12)−0.053 (5)0.099 (8)−0.042 (7)
F3B0.150 (9)0.039 (4)0.060 (5)−0.002 (5)−0.014 (5)0.019 (4)
F40.0962 (15)0.0700 (13)0.0804 (14)0.0121 (11)0.0155 (12)0.0131 (10)
F50.1159 (19)0.126 (2)0.0824 (15)−0.0115 (15)0.0462 (14)0.0322 (13)
F60.156 (2)0.0963 (16)0.0446 (11)−0.0156 (14)−0.0024 (12)0.0008 (10)
N10.0587 (14)0.0482 (13)0.0457 (13)−0.0017 (11)0.0141 (11)0.0017 (10)
N20.0664 (17)0.0551 (16)0.0467 (13)−0.0082 (12)0.0122 (12)0.0045 (11)
N30.0571 (15)0.0648 (15)0.0470 (13)−0.0053 (12)0.0144 (12)0.0066 (11)
N40.098 (2)0.087 (2)0.0532 (16)−0.0108 (17)0.0094 (16)0.0226 (16)
C10.0562 (17)0.0488 (16)0.0488 (15)0.0003 (13)0.0142 (13)−0.0010 (12)
C20.0518 (16)0.0546 (17)0.0428 (14)−0.0016 (13)0.0099 (12)−0.0031 (12)
C30.0465 (15)0.0529 (16)0.0458 (15)0.0019 (12)0.0162 (12)0.0028 (12)
C40.0456 (15)0.0509 (16)0.0490 (15)−0.0003 (12)0.0178 (13)−0.0010 (12)
C50.0463 (15)0.0503 (16)0.0455 (14)0.0014 (12)0.0158 (12)0.0003 (12)
C60.0588 (18)0.0577 (17)0.0464 (15)−0.0016 (14)0.0160 (13)−0.0028 (13)
C70.071 (2)0.065 (2)0.0496 (16)−0.0067 (16)0.0111 (15)−0.0099 (15)
C80.076 (2)0.0534 (18)0.064 (2)−0.0126 (16)0.0141 (17)−0.0098 (15)
C90.0663 (19)0.0486 (17)0.0614 (18)−0.0040 (14)0.0177 (15)0.0032 (13)
C100.093 (3)0.053 (2)0.063 (2)0.0027 (19)0.010 (2)−0.0039 (17)
C110.086 (3)0.068 (2)0.0471 (18)−0.0073 (19)0.0134 (17)0.0009 (15)
C120.071 (2)0.0597 (19)0.0548 (18)−0.0084 (15)0.0108 (16)0.0102 (14)
C130.0595 (18)0.066 (2)0.0538 (17)−0.0075 (14)0.0174 (15)0.0150 (14)
C140.065 (2)0.069 (2)0.0581 (18)0.0049 (16)0.0240 (16)0.0125 (15)
C150.082 (2)0.080 (2)0.059 (2)0.0000 (19)0.0292 (18)−0.0011 (17)
C160.080 (2)0.100 (3)0.0503 (18)−0.007 (2)0.0203 (17)0.0073 (19)
C170.098 (3)0.070 (2)0.062 (2)−0.014 (2)0.0081 (19)0.0199 (17)
O1W0.102 (4)0.064 (2)0.081 (2)−0.010 (2)0.029 (2)0.0169 (17)
O2W0.18 (2)0.062 (7)0.093 (9)0.001 (8)0.047 (10)0.014 (6)

Geometric parameters (Å, °)

F1A—C101.337 (5)C4—C91.408 (4)
F2A—C101.312 (6)C4—C51.419 (4)
F3A—C101.269 (5)C5—C61.422 (4)
F1B—C101.370 (7)C6—C71.354 (4)
F2B—C101.288 (8)C6—C111.491 (4)
F3B—C101.288 (8)C7—C81.394 (5)
F4—C111.328 (4)C7—H70.93
F5—C111.328 (4)C8—C91.357 (4)
F6—C111.334 (4)C8—H80.93
N1—C11.314 (3)C9—H90.93
N1—C51.359 (3)C12—C131.457 (4)
N2—C31.365 (4)C12—H120.93
N2—N31.367 (3)C13—C141.384 (5)
N2—H2N0.88 (3)C13—C171.385 (4)
N3—C121.268 (4)C14—C151.363 (4)
N4—C161.314 (5)C14—H140.93
N4—C171.332 (4)C15—C161.368 (5)
C1—C21.383 (4)C15—H150.93
C1—C101.505 (4)C16—H160.93
C2—C31.377 (4)C17—H170.93
C2—H20.93O1W—H1W0.83 (2)
C3—C41.429 (4)O1W—H2W0.81 (2)
C1—N1—C5116.2 (2)F2B—C10—F1A63.3 (8)
C3—N2—N3117.6 (3)F3B—C10—F1A77.7 (8)
C3—N2—H2N124 (2)F2A—C10—F1A100.2 (4)
N3—N2—H2N118 (2)F3A—C10—F1B46.4 (5)
C12—N3—N2117.5 (3)F2B—C10—F1B97.8 (8)
C16—N4—C17116.9 (3)F3B—C10—F1B91.8 (8)
N1—C1—C2126.4 (3)F2A—C10—F1B69.6 (6)
N1—C1—C10114.4 (2)F1A—C10—F1B140.0 (5)
C2—C1—C10119.2 (3)F3A—C10—C1115.4 (3)
C3—C2—C1118.5 (2)F2B—C10—C1111.6 (6)
C3—C2—H2120.7F3B—C10—C1112.9 (7)
C1—C2—H2120.7F2A—C10—C1110.3 (5)
N2—C3—C2120.9 (3)F1A—C10—C1113.2 (3)
N2—C3—C4120.8 (3)F1B—C10—C1106.5 (5)
C2—C3—C4118.3 (2)F4—C11—F5105.5 (3)
C9—C4—C5118.7 (2)F4—C11—F6105.0 (3)
C9—C4—C3123.8 (3)F5—C11—F6106.7 (3)
C5—C4—C3117.5 (2)F4—C11—C6113.9 (3)
N1—C5—C4123.2 (2)F5—C11—C6112.9 (3)
N1—C5—C6118.5 (2)F6—C11—C6112.1 (3)
C4—C5—C6118.4 (3)N3—C12—C13120.0 (3)
C7—C6—C5120.7 (3)N3—C12—H12120.0
C7—C6—C11119.3 (3)C13—C12—H12120.0
C5—C6—C11120.0 (3)C14—C13—C17116.4 (3)
C6—C7—C8120.8 (3)C14—C13—C12123.3 (3)
C6—C7—H7119.6C17—C13—C12120.3 (3)
C8—C7—H7119.6C15—C14—C13119.6 (3)
C9—C8—C7120.2 (3)C15—C14—H14120.2
C9—C8—H8119.9C13—C14—H14120.2
C7—C8—H8119.9C14—C15—C16119.1 (4)
C8—C9—C4121.2 (3)C14—C15—H15120.5
C8—C9—H9119.4C16—C15—H15120.5
C4—C9—H9119.4N4—C16—C15123.6 (3)
F3A—C10—F2B51.7 (6)N4—C16—H16118.2
F3A—C10—F3B122.8 (7)C15—C16—H16118.2
F2B—C10—F3B129.4 (10)N4—C17—C13124.5 (4)
F3A—C10—F2A108.2 (6)N4—C17—H17117.8
F2B—C10—F2A138.2 (7)C13—C17—H17117.8
F3B—C10—F2A23.7 (8)H1W—O1W—H2W112 (4)
F3A—C10—F1A108.5 (6)
C3—N2—N3—C12173.2 (3)N1—C1—C10—F3A168.6 (8)
C5—N1—C1—C21.0 (5)C2—C1—C10—F3A−9.6 (9)
C5—N1—C1—C10−177.1 (3)N1—C1—C10—F2B112.0 (9)
N1—C1—C2—C30.3 (5)C2—C1—C10—F2B−66.2 (10)
C10—C1—C2—C3178.2 (3)N1—C1—C10—F3B−43.1 (9)
N3—N2—C3—C2−7.4 (4)C2—C1—C10—F3B138.7 (8)
N3—N2—C3—C4173.6 (3)N1—C1—C10—F2A−68.5 (5)
C1—C2—C3—N2179.6 (3)C2—C1—C10—F2A113.3 (5)
C1—C2—C3—C4−1.3 (4)N1—C1—C10—F1A42.9 (4)
N2—C3—C4—C90.1 (5)C2—C1—C10—F1A−135.3 (4)
C2—C3—C4—C9−179.0 (3)N1—C1—C10—F1B−142.3 (6)
N2—C3—C4—C5−179.9 (3)C2—C1—C10—F1B39.5 (7)
C2—C3—C4—C51.0 (4)C7—C6—C11—F4−120.2 (3)
C1—N1—C5—C4−1.3 (4)C5—C6—C11—F461.1 (4)
C1—N1—C5—C6178.2 (3)C7—C6—C11—F5119.5 (4)
C9—C4—C5—N1−179.7 (3)C5—C6—C11—F5−59.1 (4)
C3—C4—C5—N10.3 (4)C7—C6—C11—F6−1.1 (5)
C9—C4—C5—C60.8 (4)C5—C6—C11—F6−179.7 (3)
C3—C4—C5—C6−179.1 (3)N2—N3—C12—C13176.9 (3)
N1—C5—C6—C7179.1 (3)N3—C12—C13—C14−8.3 (5)
C4—C5—C6—C7−1.4 (5)N3—C12—C13—C17170.9 (4)
N1—C5—C6—C11−2.3 (4)C17—C13—C14—C15−0.3 (5)
C4—C5—C6—C11177.2 (3)C12—C13—C14—C15179.0 (3)
C5—C6—C7—C81.1 (5)C13—C14—C15—C161.0 (5)
C11—C6—C7—C8−177.5 (3)C17—N4—C16—C15−0.5 (6)
C6—C7—C8—C9−0.1 (6)C14—C15—C16—N4−0.6 (6)
C7—C8—C9—C4−0.5 (5)C16—N4—C17—C131.3 (6)
C5—C4—C9—C80.1 (5)C14—C13—C17—N4−0.9 (6)
C3—C4—C9—C8−180.0 (3)C12—C13—C17—N4179.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.88 (3)2.04 (3)2.914 (5)169 (3)
O1W—H1W···N4i0.83 (5)2.06 (6)2.855 (5)163 (7)
C9—H9···O1W0.932.423.331 (5)167

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5125).

References

  • Al-eryani, W. F. A., Kumari, J. S., Arunkashi, H. K., Vepuri, S. B. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o1742. [PMC free article] [PubMed]
  • Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227. [PubMed]
  • Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother.48, 3556–3558. [PMC free article] [PubMed]
  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem.1, 593–597. [PubMed]
  • Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem.52, 6966–6978. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett.16, 850–853. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography