PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2387.
Published online 2010 August 25. doi:  10.1107/S160053681003343X
PMCID: PMC3007868

1-(2-Oxoindolin-3-yl­idene)-4-[2-(tri­fluoro­meth­yl)phen­yl]thio­semicarbazide

Abstract

In the title compound, C16H11F3N4OS, the dihedral angle between the aromatic ring systems is 69.15 (10)°. Intra­molecular N—H(...)N and N—H(...)O hydrogen bonds generate S(5) and S(6) rings, respectively. A short N—H(...)F contact also occurs. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds generate R 2 2(8) loops. The dimers are linked by N—H(...)F hydrogen bonds, forming polymeric chains propagating in [100]. π–π inter­actions also exist between the centroids of the benzene rings of the 2-oxoindoline group at a distance of 3.543 (3) Å and a short C=O(...)π contact occurs. Two F atoms of the trifluoro­methyl group are disordered over two sets of sites in a 0.517 (8):0.483 (8) ratio.

Related literature

For the synthetic and biological background see: Pervez et al. (2007 [triangle], 2008 [triangle], 2010a [triangle]). For a related structure, see: Pervez et al. (2010b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2387-scheme1.jpg

Experimental

Crystal data

  • C16H11F3N4OS
  • M r = 364.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2387-efi1.jpg
  • a = 4.5214 (3) Å
  • b = 16.6197 (14) Å
  • c = 21.6111 (18) Å
  • β = 93.241 (3)°
  • V = 1621.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.32 × 0.14 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.962, T max = 0.970
  • 12183 measured reflections
  • 2886 independent reflections
  • 1920 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.167
  • S = 1.02
  • 2886 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003343X/hb5611sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003343X/hb5611Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MR, HP and MY thank the Ministry of Science & Technology (MoST), Government of Pakistan, for partial financial assistance under the Projects for the Strengthening of S&T Education in Universities (Project No. P&D/ S&T/2001/231).

supplementary crystallographic information

Comment

In continuation of our work on the synthesis of biologically important isatin derivatives (Pervez et al., 2007, 2008, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the presence of trifluoromethyl instead of fluoro function at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety.

In (I), the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the phenyl ring C (C10—C15) of the trifluoromethylphenyl substituant are almost planar with r. m. s. deviations of 0.0243, 0.0199 and 0.0035 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.56 (16)°, 69.15 (10)° and 68.08 (11)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), two S(5) and three S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerized (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. There exist C═O···π interaction (Table 1). There also exist π–π interactions between the centroids of the rings of 2-oxoindolin at a distance of 3.543 (3) Å. The dimers are interlinked from the ends through N—H···F type of H-bondings. The interlinkage of dimers make one dimensional polymeric chains extending along the a axis. The trifluoromethyl substituant has two F-atoms disordered over two set of sites with occupancy ratio of 0.517 (8):0.483 (8).

Experimental

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(2-(trifluoromethyl)phenyl)thiosemicarbazide (1.18 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether furnished the target compound in pure form (1.37 g, 83%), m.p. 529 K (d). The dark yellow needle-like crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement

The trifluoromethyl substituent has two F-atoms disordered. The disordered atoms were treated with equal anisotropic thermal parameters which resulted in the occupancy ratio of 0.517 (8):0.483 (8).

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
Fig. 2.
The partial packing of (I), which shows that molecules form one-dimensional polymeric chains extending along the a axis due to interlinkage of dimers with different ring motifs.

Crystal data

C16H11F3N4OSF(000) = 744
Mr = 364.35Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1920 reflections
a = 4.5214 (3) Åθ = 2.3–25.1°
b = 16.6197 (14) ŵ = 0.24 mm1
c = 21.6111 (18) ÅT = 296 K
β = 93.241 (3)°Needle, yellow
V = 1621.4 (2) Å30.32 × 0.14 × 0.12 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2886 independent reflections
Radiation source: fine-focus sealed tube1920 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 8.3 pixels mm-1θmax = 25.1°, θmin = 2.3°
ω scansh = −5→3
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −19→19
Tmin = 0.962, Tmax = 0.970l = −25→25
12183 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.076P)2 + 1.5855P] where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.1580 (3)0.24551 (7)0.21357 (6)0.0553 (4)
F1−0.0115 (7)0.0741 (2)0.08290 (15)0.0825 (12)
F2A0.375 (2)0.0318 (5)0.0597 (4)0.0788 (14)0.517 (8)
F3A0.0360 (19)−0.0568 (5)0.0737 (4)0.0788 (14)0.517 (8)
O10.4521 (8)0.42453 (18)0.06431 (14)0.0553 (10)
N10.7546 (8)0.4227 (2)−0.01834 (16)0.0499 (11)
N20.6597 (8)0.25246 (19)0.07503 (15)0.0416 (11)
N30.4709 (8)0.27331 (19)0.11784 (15)0.0430 (11)
N40.4895 (8)0.14419 (19)0.15100 (16)0.0466 (11)
C10.7346 (9)0.3061 (2)0.03602 (18)0.0394 (12)
C20.9279 (9)0.2941 (3)−0.01449 (18)0.0427 (12)
C31.0847 (11)0.2284 (3)−0.0344 (2)0.0543 (17)
C41.2404 (12)0.2366 (3)−0.0870 (2)0.0645 (17)
C51.2403 (12)0.3090 (4)−0.1191 (2)0.0662 (19)
C61.0873 (11)0.3748 (3)−0.0996 (2)0.0619 (17)
C70.9314 (10)0.3661 (3)−0.04719 (19)0.0458 (14)
C80.6269 (10)0.3914 (3)0.03103 (19)0.0438 (14)
C90.3807 (9)0.2175 (2)0.15997 (17)0.0377 (12)
C100.4371 (9)0.0756 (2)0.18801 (19)0.0428 (14)
C110.2761 (10)0.0108 (3)0.1631 (2)0.0491 (16)
C120.2286 (12)−0.0553 (3)0.2002 (3)0.070 (2)
C130.3394 (14)−0.0571 (3)0.2602 (3)0.079 (2)
C140.5000 (13)0.0060 (3)0.2843 (3)0.0698 (19)
C150.5497 (11)0.0725 (3)0.2485 (2)0.0558 (17)
C160.1630 (12)0.0110 (3)0.0976 (3)0.0607 (17)
F2B0.361 (2)−0.0028 (6)0.0569 (4)0.0788 (14)0.483 (8)
F3B−0.057 (2)−0.0436 (5)0.0932 (4)0.0788 (14)0.483 (8)
H10.730800.47161−0.030710.0598*
H41.346920.19316−0.101200.0768*
H31.085070.18001−0.012810.0654*
H3A0.405630.321850.119040.0515*
H61.089150.42337−0.120970.0737*
H120.12021−0.098780.184080.0849*
H130.30519−0.101670.284800.0948*
H140.576340.004100.325110.0834*
H150.659440.115410.265210.0668*
H4A0.600460.137900.120330.0558*
H51.346200.31296−0.154610.0794*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0671 (8)0.0496 (7)0.0511 (7)0.0070 (6)0.0199 (6)0.0021 (5)
F10.086 (2)0.083 (2)0.078 (2)0.0254 (19)−0.0001 (17)0.0080 (17)
F2A0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)−0.042 (2)
F3A0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)−0.042 (2)
O10.078 (2)0.0382 (16)0.0506 (18)0.0052 (16)0.0105 (17)0.0086 (14)
N10.063 (2)0.0381 (19)0.049 (2)−0.0037 (17)0.0070 (18)0.0155 (16)
N20.052 (2)0.0348 (18)0.0383 (18)−0.0034 (16)0.0060 (16)0.0034 (15)
N30.057 (2)0.0297 (17)0.0429 (19)0.0026 (16)0.0086 (17)0.0053 (14)
N40.064 (2)0.0330 (19)0.045 (2)−0.0015 (16)0.0229 (17)0.0028 (15)
C10.049 (2)0.033 (2)0.036 (2)−0.0040 (18)0.0003 (18)0.0058 (17)
C20.047 (2)0.042 (2)0.039 (2)−0.009 (2)0.0005 (19)0.0043 (18)
C30.066 (3)0.048 (3)0.049 (3)−0.009 (2)0.005 (2)0.003 (2)
C40.069 (3)0.068 (3)0.058 (3)−0.008 (3)0.017 (3)−0.010 (3)
C50.068 (3)0.085 (4)0.047 (3)−0.017 (3)0.015 (2)0.003 (3)
C60.067 (3)0.069 (3)0.050 (3)−0.015 (3)0.007 (2)0.019 (2)
C70.045 (2)0.051 (3)0.041 (2)−0.011 (2)−0.0014 (19)0.009 (2)
C80.055 (3)0.036 (2)0.040 (2)−0.006 (2)−0.002 (2)0.0090 (18)
C90.047 (2)0.032 (2)0.034 (2)−0.0045 (18)0.0019 (18)0.0011 (16)
C100.052 (3)0.031 (2)0.047 (2)0.0045 (19)0.016 (2)0.0073 (18)
C110.057 (3)0.032 (2)0.059 (3)0.005 (2)0.010 (2)0.0033 (19)
C120.079 (4)0.033 (3)0.099 (4)−0.008 (2)0.003 (3)0.013 (3)
C130.091 (4)0.055 (3)0.093 (4)0.002 (3)0.016 (4)0.038 (3)
C140.087 (4)0.066 (3)0.057 (3)0.007 (3)0.010 (3)0.023 (3)
C150.071 (3)0.047 (3)0.050 (3)−0.003 (2)0.010 (2)0.005 (2)
C160.066 (3)0.041 (3)0.075 (3)−0.006 (2)0.004 (3)−0.007 (2)
F2B0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)−0.042 (2)
F3B0.091 (2)0.076 (3)0.070 (2)0.007 (3)0.0103 (16)−0.042 (2)

Geometric parameters (Å, °)

S1—C91.645 (4)C2—C71.390 (7)
F1—C161.340 (6)C3—C41.377 (7)
F2A—C161.341 (11)C4—C51.389 (8)
F2B—C161.310 (11)C5—C61.373 (8)
F3A—C161.354 (10)C6—C71.375 (6)
F3B—C161.346 (10)C10—C151.377 (6)
O1—C81.229 (6)C10—C111.391 (6)
N1—C81.346 (6)C11—C121.384 (7)
N1—C71.403 (6)C11—C161.478 (8)
N2—C11.286 (5)C12—C131.364 (9)
N2—N31.339 (5)C13—C141.362 (8)
N3—C91.378 (5)C14—C151.375 (7)
N4—C101.420 (5)C3—H30.9300
N4—C91.332 (5)C4—H40.9300
N1—H10.8600C5—H50.9300
N3—H3A0.8600C6—H60.9300
N4—H4A0.8600C12—H120.9300
C1—C21.450 (6)C13—H130.9300
C1—C81.501 (6)C14—H140.9300
C2—C31.384 (7)C15—H150.9300
C7—N1—C8112.0 (4)C10—C11—C12119.0 (4)
N3—N2—C1118.4 (3)C10—C11—C16120.9 (4)
N2—N3—C9120.4 (3)C11—C12—C13120.5 (5)
C9—N4—C10125.3 (3)C12—C13—C14120.4 (5)
C8—N1—H1124.00C13—C14—C15120.3 (6)
C7—N1—H1124.00C10—C15—C14120.1 (5)
N2—N3—H3A120.00F1—C16—C11113.3 (5)
C9—N3—H3A120.00F1—C16—F2B113.2 (6)
C10—N4—H4A117.00F2B—C16—C11115.5 (6)
C9—N4—H4A117.00F3B—C16—C11106.3 (6)
N2—C1—C8127.3 (4)F2B—C16—F3B111.4 (7)
N2—C1—C2126.2 (4)F1—C16—F3B95.1 (5)
C2—C1—C8106.4 (3)F2A—C16—F3A106.5 (7)
C1—C2—C7106.8 (4)F2A—C16—C11111.4 (6)
C1—C2—C3133.1 (4)F3A—C16—C11118.7 (6)
C3—C2—C7120.0 (4)F1—C16—F2A94.9 (5)
C2—C3—C4118.3 (4)F1—C16—F3A109.3 (6)
C3—C4—C5120.8 (5)C2—C3—H3121.00
C4—C5—C6121.5 (4)C4—C3—H3121.00
C5—C6—C7117.4 (5)C3—C4—H4120.00
N1—C7—C2109.2 (4)C5—C4—H4120.00
N1—C7—C6128.8 (4)C4—C5—H5119.00
C2—C7—C6122.0 (4)C6—C5—H5119.00
O1—C8—C1126.7 (4)C5—C6—H6121.00
N1—C8—C1105.7 (4)C7—C6—H6121.00
O1—C8—N1127.6 (4)C11—C12—H12120.00
S1—C9—N4127.4 (3)C13—C12—H12120.00
S1—C9—N3119.4 (3)C12—C13—H13120.00
N3—C9—N4113.2 (3)C14—C13—H13120.00
N4—C10—C15120.0 (4)C13—C14—H14120.00
N4—C10—C11120.3 (4)C15—C14—H14120.00
C11—C10—C15119.7 (4)C10—C15—H15120.00
C12—C11—C16120.0 (5)C14—C15—H15120.00
C8—N1—C7—C2−1.7 (5)C3—C2—C7—N1179.4 (4)
C8—N1—C7—C6177.6 (5)C3—C2—C7—C60.1 (7)
C7—N1—C8—O1−177.0 (4)C2—C3—C4—C50.1 (7)
C7—N1—C8—C11.2 (5)C3—C4—C5—C60.3 (8)
C1—N2—N3—C9179.0 (4)C4—C5—C6—C7−0.6 (7)
N3—N2—C1—C2−178.0 (4)C5—C6—C7—N1−178.8 (5)
N3—N2—C1—C8−2.0 (6)C5—C6—C7—C20.4 (7)
N2—N3—C9—S1177.9 (3)N4—C10—C11—C12179.9 (4)
N2—N3—C9—N4−2.7 (5)N4—C10—C11—C161.5 (6)
C10—N4—C9—S1−1.6 (6)C15—C10—C11—C121.0 (7)
C10—N4—C9—N3178.9 (4)C15—C10—C11—C16−177.5 (4)
C9—N4—C10—C11113.7 (5)N4—C10—C15—C14−179.8 (4)
C9—N4—C10—C15−67.3 (6)C11—C10—C15—C14−0.8 (7)
N2—C1—C2—C3−1.7 (8)C10—C11—C12—C13−0.4 (8)
N2—C1—C2—C7176.0 (4)C16—C11—C12—C13178.1 (5)
C8—C1—C2—C3−178.3 (5)C10—C11—C16—F1−56.9 (6)
C8—C1—C2—C7−0.7 (5)C10—C11—C16—F2A48.7 (7)
N2—C1—C8—O11.3 (7)C10—C11—C16—F3A172.9 (6)
N2—C1—C8—N1−176.9 (4)C12—C11—C16—F1124.6 (5)
C2—C1—C8—O1177.9 (4)C12—C11—C16—F2A−129.8 (6)
C2—C1—C8—N1−0.3 (5)C12—C11—C16—F3A−5.6 (8)
C1—C2—C3—C4177.1 (5)C11—C12—C13—C14−0.4 (9)
C7—C2—C3—C4−0.3 (7)C12—C13—C14—C150.6 (9)
C1—C2—C7—N11.4 (5)C13—C14—C15—C100.0 (8)
C1—C2—C7—C6−177.9 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/C7/N1/C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.864 (5)163
N3—H3A···O10.862.092.766 (4)135
N4—H4A···F1ii0.862.242.998 (5)147
N4—H4A···F2A0.862.392.745 (9)105
N4—H4A···N20.862.162.582 (5)110
C3—H3···F3Aiii0.932.483.017 (10)117
C8—O1···Cg1iv1.229 (6)3.424 (4)3.835 (5)100.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y, −z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5611).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res.21, 1178–1186. [PubMed]
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I., Khan, K. M. & Yaqub, M. (2008). J. Enz. Inhib. Med. Chem.23, 848–854. [PubMed]
  • Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov.7, 102–108.
  • Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography