PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2362.
Published online 2010 August 21. doi:  10.1107/S1600536810032629
PMCID: PMC3007863

2,4,6-Trimethyl­pyridinium nitrate

Abstract

In the title compound, C8H12N+·NO3 , the cation lies on a mirror plane and the N and one C atom lie on a twofold axis. In the crystal, the anions and cations are linked by N—H(...)O inter­actions along the b axis and a short N—O(...)π contact [3.2899 (5) Å] also occurs.

Related literature

For the use of sym-collidine and its derivatives, see: Brunel & Rousseau (1995 [triangle]); Homsi & Rousseau (1998 [triangle]); Rousseau & Robin (1997 [triangle]); Simonot & Rousseau (1994 [triangle]); Syper et al. (1980 [triangle]); Yamamoto et al. (1992 [triangle]). For structural properties of the related compound, 2,4,6-collidine, see: Bond & Davies (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2362-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·NO3
  • M r = 184.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2362-efi1.jpg
  • a = 9.328 (1) Å
  • b = 15.1327 (13) Å
  • c = 6.4967 (7) Å
  • V = 917.06 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.28 × 0.16 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • 1839 measured reflections
  • 648 independent reflections
  • 410 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.149
  • S = 1.00
  • 648 reflections
  • 58 parameters
  • 8 restraints
  • All H-atom parameters refined
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810032629/bx2300sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810032629/bx2300Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Sym-collidine and its derivatives are extensively used in organic synthesis (Syper et al., 1980; Rousseau et al., 1997). Bis(2,4,6-trimethylpyridine)iodine(I) and -bromine(I) hexafluorophosphate have been used for specific electrophilic halogenations (Homsi et al., 1998; Simonot et al., 1994; Brunel et al., 1995). It is also used in the synthesis of vitamin D (Yamamoto et al., 1992). Here in we reported the crystal structure of collidinium nitrate.

In the title compound (I), (Fig. 1),the cation lies on a mirror plane and the N and one C atoms lies on two-fold axis. The anions and cations are linked by N—H···O interactions along the b axis. The bond distances and angles in (I) agree with those reported in a similar compound 2,4,6-collidine (Bond & Davies, 2001).

The anions and cations of (I) are linked by N—H···O interactions along the b axis (Table 1, Fig. 2). In the crystal structure, the O1 atom in the nitrate anion generates the N—O···π interactions [N2—O1···Cg1iii = 3.2899 (5) Å and N2—O1···Cg1iv = 3.2899 (5) Å; symmetry codes: (iii) -1/2 + x, 1/2 - y, -z; (iv) -1/2 + x, 1/2 - y, 1-z. Cg1 is a centroid of the aromatic pyridine ring] between two pyridine rings as a sandwich to establish the packing.

Experimental

To 2 ml of trimethyl pyridine, concentrated nitric acid (2 ml) was added drop wise. The mixture was refluxed for an hour, filtered. Within half an hour needle like crystals of titled compound appeared, suitable for x-ray crystallography.

Refinement

All H atoms were found on the difference map and refined with the distance restraints of N—H = 0.875 (18) Å and C—H = 0.93 (2) - 0.96 (4) Å. Their displacement parameters were constrained to ride on their parent atoms [Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for other atoms].

Figures

Fig. 1.
A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) 1-x, y, 1/2-z; (d) 2-x, y, 1/2-z.]
Fig. 2.
A packing diagram of the title molecule showing the N—H···O interactions, down the c axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C8H12N+·NO3F(000) = 392
Mr = 184.20Dx = 1.334 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 494 reflections
a = 9.328 (1) Åθ = 4.1–23.2°
b = 15.1327 (13) ŵ = 0.10 mm1
c = 6.4967 (7) ÅT = 296 K
V = 917.06 (16) Å3Needle, colourless
Z = 40.28 × 0.16 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer410 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
graphiteθmax = 28.3°, θmin = 4.1°
[var phi] and ω scansh = −11→12
1839 measured reflectionsk = −19→20
648 independent reflectionsl = −8→4

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149All H-atom parameters refined
S = 1.00w = 1/[σ2(Fo2) + (0.0764P)2 + 0.2375P] where P = (Fo2 + 2Fc2)/3
648 reflections(Δ/σ)max < 0.001
58 parametersΔρmax = 0.16 e Å3
8 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N11.000000.13163 (15)0.250000.0411 (8)
C11.000000.4105 (2)0.250000.0604 (13)
C21.000000.31135 (19)0.250000.0444 (10)
C30.8725 (2)0.26452 (14)0.250000.0454 (7)
C40.8728 (2)0.17377 (14)0.250000.0422 (7)
C50.7402 (3)0.11973 (17)0.250000.0577 (9)
O10.500000.31452 (15)0.250000.0754 (10)
O20.6109 (2)0.43578 (17)0.250000.1128 (13)
N20.500000.39433 (16)0.250000.0469 (9)
H11.000000.0738 (12)0.250000.0560*
H1A1.095 (3)0.435 (4)0.250000.0700*0.500
H1B0.949 (3)0.432 (2)0.369 (4)0.0700*0.500
H30.7858 (19)0.2953 (14)0.250000.0560*
H5A0.661 (2)0.1569 (14)0.250000.0700*
H5B0.7366 (19)0.0801 (10)0.135 (3)0.0700*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0464 (14)0.0334 (12)0.0436 (16)0.00000.00000.0000
C10.065 (2)0.0383 (16)0.078 (3)0.00000.00000.0000
C20.0526 (17)0.0367 (14)0.044 (2)0.00000.00000.0000
C30.0451 (11)0.0428 (12)0.0483 (15)0.0043 (9)0.00000.0000
C40.0428 (11)0.0432 (11)0.0407 (14)−0.0009 (9)0.00000.0000
C50.0470 (13)0.0491 (13)0.077 (2)−0.0054 (10)0.00000.0000
O10.098 (2)0.0401 (12)0.088 (2)0.00000.00000.0000
O20.0894 (16)0.1011 (18)0.148 (3)−0.0507 (13)0.00000.0000
N20.0526 (15)0.0461 (15)0.0420 (17)0.00000.00000.0000

Geometric parameters (Å, °)

O1—N21.208 (3)C1—H1Ai0.96 (4)
O2—N21.210 (2)C1—H1A0.96 (4)
N1—C41.347 (2)C1—H1B0.96 (3)
N1—C4i1.347 (2)C1—H1Bii0.96 (3)
N1—H10.875 (18)C1—H1Bi0.96 (3)
C1—C21.500 (4)C1—H1Biii0.96 (3)
C2—C3i1.384 (2)C3—H30.933 (19)
C2—C31.384 (2)C5—H5Biii0.959 (18)
C3—C41.373 (3)C5—H5A0.93 (2)
C4—C51.483 (3)C5—H5B0.959 (18)
O2···N1iv3.139 (3)H1···H5Bi2.570 (18)
O2···C5v3.111 (4)H1···H5Biii2.570 (18)
O2···N1v3.139 (3)H1···H5B2.570 (18)
O1···H32.682 (18)H1···O2ix2.331 (16)
O1···H5Avi2.82 (2)H1···N2ix2.716 (18)
O1···H32.682 (18)H1···H5Bii2.570 (18)
O1···H5A2.82 (2)H1···O2xii2.331 (16)
O1···H3vi2.682 (18)H1···O2xvi2.331 (16)
O1···H3vii2.682 (18)H1···N2xvi2.716 (18)
O1···H5Avii2.82 (2)H1···N2xiii2.716 (18)
O1···H5A2.82 (2)H1···N2xii2.716 (18)
O2···H1iv2.331 (16)H1···O2xiii2.331 (16)
O2···H5Bviii2.888 (19)H1A···H3i2.39 (6)
O2···H32.68 (2)H1A···O2i2.74 (3)
O2···H1Ai2.74 (3)H1A···O2ii2.74 (3)
O2···H32.68 (2)H1A···H3i2.39 (6)
O2···H1Ai2.74 (3)H1B···H5Bviii2.45 (3)
O2···H1v2.331 (16)H3···O12.682 (18)
O2···H5Bv2.711 (16)H3···O22.68 (2)
N1···N2viii3.2720 (5)H3···H5A2.40 (3)
N1···O2ix3.139 (3)H3···O12.682 (18)
N1···N2x3.2720 (5)H3···O22.68 (2)
N1···N2xi3.2720 (5)H3···H1Ai2.39 (6)
N1···O2xii3.139 (3)H3···O12.682 (18)
N1···O2xiii3.139 (3)H3···O12.682 (18)
N1···N2xiv3.2720 (5)H3···H1Ai2.39 (6)
N1···N2xv3.2720 (5)H5A···O12.82 (2)
N1···O2xvi3.139 (3)H5A···O12.82 (2)
N1···N2xvii3.2720 (5)H5A···H32.40 (3)
N1···N2xviii3.2720 (5)H5A···O12.82 (2)
N1···N2xix3.2720 (5)H5A···O12.82 (2)
N2···N1viii3.2720 (5)H5B···O2x2.888 (19)
N2···N1x3.2720 (5)H5B···H1Bx2.45 (3)
N2···H1iv2.716 (18)H5B···H12.570 (18)
N2···H1v2.716 (18)H5B···O2xix2.888 (19)
C5···O2xiii3.111 (4)H5B···O2xiii2.711 (16)
C5···O2xvi3.111 (4)H5B···O2xvi2.711 (16)
C4—N1—C4i123.5 (2)H1Ai—C1—H1B54.2 (17)
C4—N1—H1118.26 (12)H1B—C1—H1Bi141 (3)
C4i—N1—H1118.26 (12)H1B—C1—H1Biii107 (2)
O2—N2—O2vi117.5 (3)H1A—C1—H1Ai135 (5)
O1—N2—O2vi121.23 (15)H1A—C1—H1Bi54.2 (17)
O1—N2—O2121.23 (15)H1Ai—C1—H1Biii54.2 (17)
C1—C2—C3120.79 (13)H1Ai—C1—H1Bii109 (2)
C1—C2—C3i120.79 (13)H1Bi—C1—H1Biii59 (2)
C3—C2—C3i118.4 (2)H1Bi—C1—H1Bii107 (2)
C2—C3—C4120.67 (19)H1Biii—C1—H1Bii141 (3)
N1—C4—C5118.3 (2)C2—C1—H1A113 (3)
C3—C4—C5123.35 (19)H1B—C1—H1Bii59 (2)
N1—C4—C3118.37 (18)H1Ai—C1—H1Bi109 (2)
C2—C1—H1Ai113 (3)C2—C3—H3119.3 (13)
C2—C1—H1Bi109.7 (18)C4—C3—H3120.1 (13)
C2—C1—H1Bii109.7 (18)C4—C5—H5Biii112.0 (11)
H1A—C1—H1B109 (2)H5A—C5—H5Biii110.6 (13)
C2—C1—H1Biii109.7 (18)H5B—C5—H5Biii102.4 (15)
C2—C1—H1B109.7 (18)H5A—C5—H5B110.6 (13)
H1A—C1—H1Biii109 (2)C4—C5—H5A109.2 (13)
H1A—C1—H1Bii54.2 (17)C4—C5—H5B112.0 (11)
C1—C2—C3—C4180.00C2—C3—C4—C5180.00
C2—C3—C4—N10.00

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+2, y, z; (iii) x, y, −z+1/2; (iv) x−1/2, y+1/2, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1, y, −z+1/2; (vii) −x+1, y, z; (viii) −x+3/2, −y+1/2, z+1/2; (ix) x+1/2, y−1/2, z; (x) −x+3/2, −y+1/2, z−1/2; (xi) −x+3/2, −y+1/2, −z+1; (xii) x+1/2, y−1/2, −z+1/2; (xiii) −x+3/2, y−1/2, z; (xiv) x+1/2, −y+1/2, z−1/2; (xv) x+1/2, −y+1/2, z+1/2; (xvi) −x+3/2, y−1/2, −z+1/2; (xvii) x+1/2, −y+1/2, −z; (xviii) x+1/2, −y+1/2, −z+1; (xix) −x+3/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2ix0.875 (18)2.331 (16)3.139 (3)153.7 (2)
N1—H1···O2xvi0.875 (18)2.331 (16)3.139 (3)153.7 (2)

Symmetry codes: (ix) x+1/2, y−1/2, z; (xvi) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2300).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1141–o1142.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Brunel, Y. & Rousseau, G. (1995). Tetrahedron Lett.36, 8217–8220.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Homsi, F. & Rousseau, G. (1998). J. Org. Chem.63, 5255–5258.
  • Rousseau, G. & Robin, S. (1997). Tetrahedron Lett.38, 2467–2470.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simonot, B. & Rousseau, G. (1994). J. Org. Chem.59, 5912–5919.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Syper, L., Kloc, K. & Młochowski, J. (1980). Tetrahedron, 36, 123–129.
  • Yamamoto, K., Shimizu, M., Yamada, S., Iwata, S. & Hoshino, O. (1992). J. Org. Chem.57, 33–39.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography