PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2314–o2315.
Published online 2010 August 18. doi:  10.1107/S1600536810031673
PMCID: PMC3007862

4-Hy­droxy-3-(3-meth­oxybenzoyl)-2-[(3-meth­oxybenzoyl)methyl]-2H-1,2-benzothia­zine 1,1-dioxide

Abstract

In the title compound, C25H21NO7S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by −0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by the remaining ring atoms; the puckering parameters are: Q = 0.4576 (13) Å, θ = 58.6 (2) and ϕ = 34.3 (3)°. The structure is devoid of any classical hydrogen bonds. However, intra­molecular C—H(...)N and O—H(...)O hydrogen bonds result in six-membered rings and inter­molecular C—H(...)O inter­actions stabilize the crystal structure.

Related literature

For the biological applications of benzothia­zines, see: Lombardino et al. (1972 [triangle]); Zinnes et al. (1982 [triangle]); Zia-ur-Rehman et al. (2005 [triangle]); Turck et al. (1996 [triangle]); Ahmad et al. (2010 [triangle]). For related structures, see: Siddiqui et al. (2008 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2314-scheme1.jpg

Experimental

Crystal data

  • C25H21NO7S
  • M r = 479.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2314-efi1.jpg
  • a = 10.3169 (2) Å
  • b = 10.6923 (3) Å
  • c = 11.6867 (3) Å
  • α = 115.5965 (11)°
  • β = 105.8041 (14)°
  • γ = 97.6128 (13)°
  • V = 1071.22 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 173 K
  • 0.24 × 0.16 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.953, T max = 0.984
  • 9164 measured reflections
  • 4860 independent reflections
  • 4419 reflections with (I) > 2.0 σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.098
  • S = 1.07
  • 4860 reflections
  • 310 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536810031673/jh2194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031673/jh2194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

supplementary crystallographic information

Comment

Oxicams are non steroidal anti-inflammatory drugs (NSAID's) that posses benzothiazine nucleus (Lombardino et al., 1972; Zinnes et al., 1982). Versatile biological activities are associated with benzothiazine derivatives, e.g., anti-microbial (Zia-ur-Rehman et al., 2005), analgesic (Turck et al., 1996), antioxidant (Ahmad et al., 2010), etc. In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.4576 (13) Å, θ = 58.6 (2)° and [var phi] = 34.3 (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008). The carbon fragments C1–C15 and C17–C24 are more or less planar individually and lie at an angle 77.17 (2)° with rest to each other.

The structure is devoid of any classical hydrogen bonds. However, intramolecular interactions C15—H15···N1 and O3—H3O···O4 resulting in six membered rings and intermolecular interactions of the type C—H···O are present (Tab. 1).

Experimental

4-Hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (2 g, 6.0 mmol), K2CO3 (1.24 g, 9.0 mmol), 3-methoxyphenacyl bromide (1.42 g, 6.2 mmol) and acetonitrile (25 ml) were refluxed for 6 h. The completion of reaction was monitored by TLC. After cooling to room temperature, the reaction mixture was poured into ice cold water. Yellow precipitates obtained were filtered, washed with cold water and dried. The crystals suitable for crystallographic study were grown from a solution of methanol and chloroform (1:1).

Refinement

The H-atoms were located from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with O—H = 0.84 Å and C—H = 0.95–0.99 Å; the Uiso(H) were allowed at 1.2Ueq(C) or 1.5Ueq(O). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).

Crystal data

C25H21NO7SZ = 2
Mr = 479.49F(000) = 500
Triclinic, P1Dx = 1.487 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3169 (2) ÅCell parameters from 4699 reflections
b = 10.6923 (3) Åθ = 1.0–27.5°
c = 11.6867 (3) ŵ = 0.20 mm1
α = 115.5965 (11)°T = 173 K
β = 105.8041 (14)°Prism, yellow
γ = 97.6128 (13)°0.24 × 0.16 × 0.08 mm
V = 1071.22 (5) Å3

Data collection

Nonius KappaCCD diffractometer4860 independent reflections
Radiation source: fine-focus sealed tube4419 reflections with (I) > 2.0 σ(I)
graphiteRint = 0.021
ω and [var phi] scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −13→13
Tmin = 0.953, Tmax = 0.984k = −13→13
9164 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.098H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0352P)2 + 0.7607P] where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Experimental. Yield: 2.44 g, 85%, m.p. 434–435 K, IR (KBr, νmax): 2972, 1708, 1331, 1172 cm-1, EI—MS (m/z): 479.0
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.29020 (4)0.27269 (4)0.29750 (3)0.01827 (10)
O10.23063 (12)0.17819 (13)0.33899 (11)0.0256 (2)
O20.33929 (12)0.42553 (12)0.39028 (11)0.0259 (2)
O30.23349 (13)−0.08669 (12)−0.08736 (11)0.0273 (3)
H3O0.2898−0.1328−0.07260.041*
O40.42851 (13)−0.14158 (13)0.03455 (12)0.0320 (3)
O50.70078 (13)0.17729 (14)0.64535 (12)0.0310 (3)
O60.42789 (11)0.38168 (13)0.12184 (12)0.0281 (3)
O71.04913 (12)0.66025 (14)0.44194 (12)0.0313 (3)
N10.41973 (12)0.22081 (13)0.25537 (12)0.0175 (2)
C10.16599 (15)0.23577 (16)0.14140 (15)0.0195 (3)
C20.07019 (16)0.31470 (18)0.14134 (17)0.0251 (3)
H20.07730.39540.22360.030*
C3−0.03709 (17)0.27353 (19)0.01822 (18)0.0277 (3)
H3−0.10430.32610.01630.033*
C4−0.04588 (16)0.15639 (18)−0.10117 (16)0.0260 (3)
H4−0.12080.1274−0.18420.031*
C50.05357 (16)0.08082 (17)−0.10094 (15)0.0231 (3)
H50.04800.0024−0.18400.028*
C60.16194 (15)0.11974 (16)0.02119 (15)0.0193 (3)
C80.38133 (15)0.07832 (15)0.14093 (14)0.0185 (3)
C70.26316 (15)0.03505 (16)0.02289 (15)0.0198 (3)
C90.45739 (16)−0.02239 (16)0.14564 (15)0.0219 (3)
C100.56820 (16)−0.00465 (16)0.26834 (16)0.0218 (3)
C110.65958 (18)−0.09010 (18)0.24566 (18)0.0278 (3)
H110.6521−0.15300.15520.033*
C120.76153 (19)−0.0826 (2)0.35613 (19)0.0337 (4)
H120.8241−0.14030.34080.040*
C130.77297 (18)0.0075 (2)0.48786 (18)0.0311 (4)
H130.84310.01160.56260.037*
C140.68140 (17)0.09261 (17)0.51133 (16)0.0245 (3)
C150.57875 (16)0.08652 (16)0.40222 (16)0.0223 (3)
H150.51590.14380.41800.027*
C160.6187 (2)0.2765 (2)0.67580 (18)0.0354 (4)
H16A0.64430.33210.77490.043*
H16B0.51860.22260.63240.043*
H16C0.63700.34290.64100.043*
C170.54988 (15)0.32707 (16)0.29135 (15)0.0194 (3)
H17A0.62540.27890.28690.023*
H17B0.57740.40450.38700.023*
C180.54062 (15)0.39652 (16)0.20087 (15)0.0194 (3)
C190.67638 (15)0.48054 (16)0.21338 (15)0.0199 (3)
C200.79776 (16)0.53606 (16)0.33060 (15)0.0216 (3)
H200.79420.52580.40660.026*
C210.92400 (15)0.60661 (16)0.33434 (16)0.0222 (3)
C220.92881 (17)0.62253 (17)0.22334 (17)0.0250 (3)
H221.01540.66910.22570.030*
C230.80723 (17)0.57047 (18)0.10920 (17)0.0263 (3)
H230.81040.58390.03470.032*
C240.68086 (16)0.49892 (17)0.10313 (16)0.0233 (3)
H240.59800.46270.02450.028*
C251.04318 (18)0.7108 (2)0.57431 (17)0.0323 (4)
H25A1.13680.77080.64360.039*
H25B1.01200.62790.58590.039*
H25C0.97670.76870.58450.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01845 (17)0.01876 (18)0.01474 (17)0.00516 (13)0.00559 (13)0.00620 (14)
O10.0246 (5)0.0319 (6)0.0240 (6)0.0064 (5)0.0112 (4)0.0160 (5)
O20.0275 (6)0.0205 (6)0.0193 (5)0.0081 (4)0.0047 (4)0.0030 (4)
O30.0335 (6)0.0221 (6)0.0177 (5)0.0075 (5)0.0065 (5)0.0045 (5)
O40.0389 (7)0.0217 (6)0.0249 (6)0.0131 (5)0.0092 (5)0.0028 (5)
O50.0354 (6)0.0343 (7)0.0230 (6)0.0139 (5)0.0076 (5)0.0147 (5)
O60.0193 (5)0.0358 (7)0.0315 (6)0.0052 (5)0.0049 (5)0.0220 (5)
O70.0183 (5)0.0408 (7)0.0251 (6)0.0006 (5)0.0046 (5)0.0123 (5)
N10.0169 (6)0.0149 (6)0.0167 (6)0.0026 (4)0.0053 (5)0.0056 (5)
C10.0163 (6)0.0218 (7)0.0184 (7)0.0026 (5)0.0047 (5)0.0101 (6)
C20.0231 (7)0.0268 (8)0.0246 (8)0.0079 (6)0.0087 (6)0.0117 (7)
C30.0218 (7)0.0316 (9)0.0335 (9)0.0092 (6)0.0082 (7)0.0200 (7)
C40.0201 (7)0.0302 (8)0.0246 (8)0.0003 (6)0.0017 (6)0.0166 (7)
C50.0225 (7)0.0236 (8)0.0176 (7)−0.0006 (6)0.0041 (6)0.0093 (6)
C60.0187 (7)0.0188 (7)0.0179 (7)0.0007 (5)0.0052 (5)0.0091 (6)
C80.0202 (7)0.0164 (7)0.0174 (7)0.0035 (5)0.0080 (5)0.0068 (6)
C70.0231 (7)0.0180 (7)0.0169 (7)0.0028 (6)0.0085 (6)0.0077 (6)
C90.0241 (7)0.0189 (7)0.0212 (7)0.0043 (6)0.0093 (6)0.0084 (6)
C100.0236 (7)0.0190 (7)0.0257 (8)0.0066 (6)0.0101 (6)0.0126 (6)
C110.0347 (9)0.0244 (8)0.0300 (8)0.0136 (7)0.0163 (7)0.0141 (7)
C120.0360 (9)0.0369 (10)0.0411 (10)0.0229 (8)0.0188 (8)0.0237 (8)
C130.0301 (9)0.0352 (9)0.0335 (9)0.0148 (7)0.0087 (7)0.0218 (8)
C140.0261 (8)0.0243 (8)0.0262 (8)0.0070 (6)0.0095 (6)0.0151 (7)
C150.0236 (7)0.0208 (7)0.0260 (8)0.0081 (6)0.0095 (6)0.0137 (6)
C160.0469 (11)0.0305 (9)0.0256 (8)0.0165 (8)0.0121 (8)0.0103 (7)
C170.0167 (6)0.0182 (7)0.0192 (7)0.0012 (5)0.0037 (5)0.0085 (6)
C180.0193 (7)0.0175 (7)0.0190 (7)0.0049 (5)0.0060 (5)0.0076 (6)
C190.0197 (7)0.0177 (7)0.0227 (7)0.0056 (5)0.0085 (6)0.0099 (6)
C200.0217 (7)0.0208 (7)0.0210 (7)0.0048 (6)0.0074 (6)0.0099 (6)
C210.0191 (7)0.0197 (7)0.0238 (7)0.0046 (6)0.0065 (6)0.0086 (6)
C220.0244 (8)0.0224 (7)0.0302 (8)0.0053 (6)0.0129 (6)0.0134 (7)
C230.0306 (8)0.0274 (8)0.0276 (8)0.0084 (7)0.0144 (7)0.0169 (7)
C240.0236 (7)0.0245 (8)0.0230 (7)0.0071 (6)0.0074 (6)0.0133 (6)
C250.0263 (8)0.0363 (9)0.0233 (8)0.0068 (7)0.0041 (6)0.0090 (7)

Geometric parameters (Å, °)

S1—O21.4329 (11)C10—C151.404 (2)
S1—O11.4334 (11)C11—C121.389 (2)
S1—N11.6294 (12)C11—H110.9500
S1—C11.7597 (15)C12—C131.379 (3)
O3—C71.2956 (18)C12—H120.9500
O3—H3O0.8400C13—C141.396 (2)
O4—C91.2875 (19)C13—H130.9500
O5—C141.367 (2)C14—C151.388 (2)
O5—C161.430 (2)C15—H150.9500
O6—C181.2126 (18)C16—H16A0.9800
O7—C211.3686 (18)C16—H16B0.9800
O7—C251.424 (2)C16—H16C0.9800
N1—C81.4344 (18)C17—C181.523 (2)
N1—C171.4651 (17)C17—H17A0.9900
C1—C21.382 (2)C17—H17B0.9900
C1—C61.401 (2)C18—C191.494 (2)
C2—C31.395 (2)C19—C241.396 (2)
C2—H20.9500C19—C201.401 (2)
C3—C41.384 (2)C20—C211.396 (2)
C3—H30.9500C20—H200.9500
C4—C51.388 (2)C21—C221.392 (2)
C4—H40.9500C22—C231.387 (2)
C5—C61.398 (2)C22—H220.9500
C5—H50.9500C23—C241.389 (2)
C6—C71.472 (2)C23—H230.9500
C8—C71.409 (2)C24—H240.9500
C8—C91.425 (2)C25—H25A0.9800
C9—C101.488 (2)C25—H25B0.9800
C10—C111.396 (2)C25—H25C0.9800
O2—S1—O1118.83 (7)C12—C13—C14119.97 (16)
O2—S1—N1108.34 (7)C12—C13—H13120.0
O1—S1—N1108.04 (7)C14—C13—H13120.0
O2—S1—C1110.07 (7)O5—C14—C15124.51 (15)
O1—S1—C1107.34 (7)O5—C14—C13115.40 (14)
N1—S1—C1103.07 (7)C15—C14—C13120.08 (15)
C7—O3—H3O109.5C14—C15—C10119.71 (14)
C14—O5—C16117.64 (13)C14—C15—H15120.1
C21—O7—C25117.12 (13)C10—C15—H15120.1
C8—N1—C17119.25 (11)O5—C16—H16A109.5
C8—N1—S1115.44 (9)O5—C16—H16B109.5
C17—N1—S1120.85 (10)H16A—C16—H16B109.5
C2—C1—C6122.10 (14)O5—C16—H16C109.5
C2—C1—S1119.57 (12)H16A—C16—H16C109.5
C6—C1—S1118.19 (11)H16B—C16—H16C109.5
C1—C2—C3118.73 (15)N1—C17—C18114.76 (12)
C1—C2—H2120.6N1—C17—H17A108.6
C3—C2—H2120.6C18—C17—H17A108.6
C4—C3—C2120.18 (15)N1—C17—H17B108.6
C4—C3—H3119.9C18—C17—H17B108.6
C2—C3—H3119.9H17A—C17—H17B107.6
C3—C4—C5120.69 (14)O6—C18—C19122.43 (14)
C3—C4—H4119.7O6—C18—C17120.85 (13)
C5—C4—H4119.7C19—C18—C17116.71 (12)
C4—C5—C6120.20 (15)C24—C19—C20120.41 (14)
C4—C5—H5119.9C24—C19—C18118.28 (13)
C6—C5—H5119.9C20—C19—C18121.27 (13)
C5—C6—C1118.03 (14)C21—C20—C19119.16 (14)
C5—C6—C7120.31 (14)C21—C20—H20120.4
C1—C6—C7121.57 (13)C19—C20—H20120.4
C7—C8—C9119.14 (13)O7—C21—C22115.97 (14)
C7—C8—N1119.46 (13)O7—C21—C20123.67 (14)
C9—C8—N1121.37 (13)C22—C21—C20120.34 (14)
O3—C7—C8121.27 (14)C23—C22—C21120.02 (14)
O3—C7—C6116.54 (13)C23—C22—H22120.0
C8—C7—C6122.05 (13)C21—C22—H22120.0
O4—C9—C8118.14 (14)C22—C23—C24120.47 (15)
O4—C9—C10115.58 (14)C22—C23—H23119.8
C8—C9—C10126.27 (14)C24—C23—H23119.8
C11—C10—C15119.87 (14)C23—C24—C19119.57 (14)
C11—C10—C9116.94 (14)C23—C24—H24120.2
C15—C10—C9123.09 (14)C19—C24—H24120.2
C12—C11—C10119.58 (16)O7—C25—H25A109.5
C12—C11—H11120.2O7—C25—H25B109.5
C10—C11—H11120.2H25A—C25—H25B109.5
C13—C12—C11120.78 (16)O7—C25—H25C109.5
C13—C12—H12119.6H25A—C25—H25C109.5
C11—C12—H12119.6H25B—C25—H25C109.5
O2—S1—N1—C8−166.79 (10)N1—C8—C9—C108.9 (2)
O1—S1—N1—C863.25 (12)O4—C9—C10—C1120.3 (2)
C1—S1—N1—C8−50.17 (12)C8—C9—C10—C11−160.34 (15)
O2—S1—N1—C17−10.66 (13)O4—C9—C10—C15−156.17 (15)
O1—S1—N1—C17−140.62 (11)C8—C9—C10—C1523.2 (2)
C1—S1—N1—C17105.97 (11)C15—C10—C11—C12−0.9 (2)
O2—S1—C1—C2−38.43 (14)C9—C10—C11—C12−177.40 (15)
O1—S1—C1—C292.25 (13)C10—C11—C12—C130.4 (3)
N1—S1—C1—C2−153.82 (12)C11—C12—C13—C140.0 (3)
O2—S1—C1—C6145.82 (11)C16—O5—C14—C15−6.3 (2)
O1—S1—C1—C6−83.50 (12)C16—O5—C14—C13174.28 (15)
N1—S1—C1—C630.43 (13)C12—C13—C14—O5179.53 (16)
C6—C1—C2—C32.6 (2)C12—C13—C14—C150.1 (3)
S1—C1—C2—C3−172.99 (12)O5—C14—C15—C10−179.92 (14)
C1—C2—C3—C4−0.5 (2)C13—C14—C15—C10−0.5 (2)
C2—C3—C4—C5−1.7 (2)C11—C10—C15—C140.9 (2)
C3—C4—C5—C61.9 (2)C9—C10—C15—C14177.24 (14)
C4—C5—C6—C10.2 (2)C8—N1—C17—C1877.60 (17)
C4—C5—C6—C7176.77 (13)S1—N1—C17—C18−77.64 (15)
C2—C1—C6—C5−2.4 (2)N1—C17—C18—O611.8 (2)
S1—C1—C6—C5173.19 (11)N1—C17—C18—C19−167.24 (12)
C2—C1—C6—C7−178.99 (14)O6—C18—C19—C24−22.8 (2)
S1—C1—C6—C7−3.36 (19)C17—C18—C19—C24156.26 (14)
C17—N1—C8—C7−111.52 (15)O6—C18—C19—C20159.16 (15)
S1—N1—C8—C745.01 (16)C17—C18—C19—C20−21.8 (2)
C17—N1—C8—C970.61 (18)C24—C19—C20—C21−1.7 (2)
S1—N1—C8—C9−132.85 (12)C18—C19—C20—C21176.33 (14)
C9—C8—C7—O3−9.2 (2)C25—O7—C21—C22150.29 (15)
N1—C8—C7—O3172.85 (13)C25—O7—C21—C20−31.4 (2)
C9—C8—C7—C6166.26 (13)C19—C20—C21—O7−177.72 (14)
N1—C8—C7—C6−11.6 (2)C19—C20—C21—C220.5 (2)
C5—C6—C7—O3−10.3 (2)O7—C21—C22—C23179.53 (15)
C1—C6—C7—O3166.13 (13)C20—C21—C22—C231.2 (2)
C5—C6—C7—C8173.95 (13)C21—C22—C23—C24−1.7 (2)
C1—C6—C7—C8−9.6 (2)C22—C23—C24—C190.5 (2)
C7—C8—C9—O410.4 (2)C20—C19—C24—C231.2 (2)
N1—C8—C9—O4−171.74 (13)C18—C19—C24—C23−176.90 (14)
C7—C8—C9—C10−169.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C25—H25C···O1i0.982.573.438 (2)147
C17—H17B···O2i0.992.263.244 (2)174
C17—H17B···O20.992.512.844 (2)100
C15—H15···N10.952.412.986 (2)119
O3—H3O···O40.841.672.428 (2)149

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2194).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  • Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem.15, 848–849. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]
  • Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol.36, 79–84. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc.54, 1171–1175.
  • Zinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). J. Med. Chem.25, 12–18. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography