PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2310.
Published online 2010 August 18. doi:  10.1107/S1600536810031508
PMCID: PMC3007859

2-[(4-Chlorobenzyl)iminomethyl]phenol

Abstract

The title Schiff base compound, C14H12ClNO, was prepared from 4-chloro­benzyl­amine and salicyl­aldehyde. The mol­ecule is V-shaped: the dihedral angle between the aromatic rings is 67.51 (5)°. The rings are located on the opposite side of the C=N bond, giving an E configuration. An intra­molecular N—H(...)O hydrogen bond generates a S(6) ring. In the crystal structure, only weak non-classical C—H(...)O contacts are observed.

Related literature

For background to Schiff base ligands and their biological activity, see: Adsule et al. (2006 [triangle]); Karthikeyan et al. (2006 [triangle]). For related structures, see: Tariq et al. (2010 [triangle]); Khalaji & Simpson (2009 [triangle]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]). For the synthesis, see: Kannappan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2310-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO
  • M r = 245.7
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2310-efi1.jpg
  • a = 6.2876 (2) Å
  • b = 12.2267 (3) Å
  • c = 16.2664 (5) Å
  • V = 1250.51 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.45 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker,2008 [triangle]) T min = 0.933, T max = 0.944
  • 10586 measured reflections
  • 1479 independent reflections
  • 1119 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.04
  • 1479 reflections
  • 155 parameters
  • 143 restraints
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810031508/ds2046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031508/ds2046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Research Funds from the Faculty of Science (A1B1), the Thailand Research Fund (TRF) to NM, and the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agrigulture and Center for Petroleum Petrochemicals and Advanced Materials.

supplementary crystallographic information

Comment

Schiff base complexes have gained importance from physiological and pharmacological activities point of view (Adsule et al., 2006). As part of our research efforts in the area of transition metal complex-based anticancer agents, the title compound has been prepared as a ligand by Schiff base reaction between 4-chlorobenzylamine and salicylaldehyde. We report herein on the crystal structure of the title compound.

The molecule adopts a V-shape structure. The dihedral angle between the chlorobenzene ring and 2-methyliminophenol moiety is 67.51 (5)°. The 2-methyliminophenol (C1 to C8, N1 and O1) moiety is nearly planar (r.m.s. deviation = 0.002 Å). The chlorobenzene and 2-methyliminophenol groups are located on the opposite side of the C=N bond, showing an E configuration. Intramolecular N—H···O hydrogen bond generates a S(6) ring. In the crystal structure, only weak non-classical C—H···O contact is observed.

Experimental

The title compound was prepared according to the method reported in the literature (Kannappan et al., 2005). 4-Chlorobenzylamine (2.80 ml. 2.88 g, 0.02 mol) was added to a stirred ethanol solution of salicylaldehyde (2.50 ml, 2.86 g, 0.02 mol). The reaction mixture was stirred at reflux for 1 h and then the mixture was allowed to stand at room temperature for 1 week to give yellow cystals suitable for X-ray diffraction analysis.

Refinement

All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The absolute structure could not be determined and therefore 1,031 Friedel opposites were merged.

Figures

Fig. 1.
The structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Hydrogen bond is shown as dashed line.

Crystal data

C14H12ClNOF(000) = 512
Mr = 245.7Dx = 1.305 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5069 reflections
a = 6.2876 (2) Åθ = 2.5–22.8°
b = 12.2267 (3) ŵ = 0.29 mm1
c = 16.2664 (5) ÅT = 296 K
V = 1250.51 (6) Å3Prism, yellow
Z = 40.45 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1479 independent reflections
Radiation source: Mo Kα1119 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 26.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker,2008)h = −7→7
Tmin = 0.933, Tmax = 0.944k = −15→15
10586 measured reflectionsl = −17→20

Refinement

Refinement on F2143 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038w = 1/[σ2(Fo2) + (0.0436P)2 + 0.2636P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
1479 reflectionsΔρmin = −0.29 e Å3
155 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7530 (5)−0.3508 (3)0.9530 (2)0.0818 (9)
H10.8887−0.32160.95860.098*
C20.7031 (8)−0.4471 (3)0.9927 (2)0.1008 (12)
H20.8045−0.48271.02460.121*
C30.5038 (8)−0.4895 (3)0.9849 (2)0.0974 (10)
H30.4697−0.55421.01190.117*
C40.3524 (6)−0.4384 (2)0.93779 (19)0.0815 (8)
H40.2173−0.46870.93290.098*
C50.6053 (4)−0.2970 (2)0.90492 (15)0.0587 (6)
C60.4010 (4)−0.3415 (2)0.89741 (17)0.0616 (7)
C70.6613 (5)−0.1965 (2)0.86325 (17)0.0711 (7)
H70.7986−0.16930.8690.085*
C80.5987 (7)−0.0429 (3)0.7791 (3)0.1127 (13)
H8A0.5962−0.05240.71990.135*
H8B0.7433−0.02560.79540.135*
C90.4535 (6)0.0487 (2)0.80299 (19)0.0789 (9)
C100.2539 (7)0.0585 (3)0.76832 (19)0.0857 (9)
H100.21150.00830.72870.103*
C110.1157 (5)0.1408 (2)0.79093 (19)0.0802 (8)
H11−0.01810.14610.76690.096*
C120.1783 (5)0.2140 (2)0.84889 (19)0.0748 (8)
C130.3760 (5)0.2080 (3)0.8837 (2)0.0845 (9)
H130.41810.2590.92280.101*
C140.5117 (5)0.1255 (3)0.8600 (2)0.0877 (9)
H140.64660.12190.88330.105*
Cl10.00322 (17)0.31716 (7)0.87960 (8)0.1204 (4)
N10.5305 (4)−0.14462 (19)0.81941 (15)0.0780 (7)
O10.2507 (3)−0.29358 (18)0.85185 (14)0.0864 (6)
H1A0.2973−0.23640.83250.13*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0706 (17)0.0856 (19)0.089 (2)0.0140 (17)−0.0191 (17)−0.0254 (16)
C20.122 (3)0.093 (2)0.087 (2)0.033 (2)−0.020 (2)−0.001 (2)
C30.137 (3)0.0691 (18)0.086 (2)0.012 (2)0.014 (3)0.0082 (16)
C40.086 (2)0.0660 (16)0.092 (2)−0.0105 (17)0.0111 (18)−0.0036 (16)
C50.0583 (13)0.0605 (13)0.0573 (14)0.0023 (12)0.0008 (12)−0.0156 (12)
C60.0605 (14)0.0610 (14)0.0632 (15)−0.0004 (12)−0.0037 (13)−0.0079 (12)
C70.0608 (14)0.0639 (15)0.0888 (19)−0.0073 (14)0.0169 (16)−0.0173 (14)
C80.129 (3)0.0797 (19)0.130 (3)0.006 (2)0.059 (3)0.028 (2)
C90.091 (2)0.0639 (16)0.0820 (19)−0.0101 (16)0.0210 (18)0.0202 (14)
C100.111 (2)0.0767 (19)0.0700 (18)−0.0259 (19)0.0009 (19)0.0051 (16)
C110.0789 (18)0.0806 (18)0.0811 (19)−0.0202 (17)−0.0148 (17)0.0214 (16)
C120.0780 (17)0.0599 (14)0.0864 (19)−0.0126 (15)0.0028 (16)0.0179 (14)
C130.090 (2)0.0751 (17)0.089 (2)−0.0144 (17)−0.0140 (19)−0.0004 (16)
C140.0728 (18)0.088 (2)0.102 (2)−0.0088 (19)−0.007 (2)0.0208 (18)
Cl10.1050 (7)0.0765 (5)0.1799 (10)0.0032 (6)0.0167 (8)0.0086 (6)
N10.0850 (16)0.0658 (13)0.0831 (15)−0.0002 (14)0.0188 (15)0.0061 (12)
O10.0654 (11)0.0876 (15)0.1063 (16)−0.0097 (12)−0.0213 (12)0.0083 (13)

Geometric parameters (Å, °)

C1—C21.379 (5)C8—C91.497 (5)
C1—C51.380 (4)C8—H8A0.97
C1—H10.93C8—H8B0.97
C2—C31.362 (6)C9—C141.369 (4)
C2—H20.93C9—C101.381 (5)
C3—C41.372 (5)C10—C111.379 (5)
C3—H30.93C10—H100.93
C4—C61.389 (4)C11—C121.358 (4)
C4—H40.93C11—H110.93
C5—C61.401 (4)C12—C131.367 (4)
C5—C71.446 (4)C12—Cl11.747 (3)
C6—O11.336 (3)C13—C141.376 (5)
C7—N11.260 (3)C13—H130.93
C7—H70.93C14—H140.93
C8—N11.470 (4)O1—H1A0.82
C2—C1—C5121.3 (3)N1—C8—H8B109.7
C2—C1—H1119.3C9—C8—H8B109.7
C5—C1—H1119.3H8A—C8—H8B108.2
C3—C2—C1119.3 (3)C14—C9—C10117.4 (3)
C3—C2—H2120.3C14—C9—C8121.8 (3)
C1—C2—H2120.3C10—C9—C8120.9 (4)
C2—C3—C4121.1 (3)C11—C10—C9121.8 (3)
C2—C3—H3119.4C11—C10—H10119.1
C4—C3—H3119.4C9—C10—H10119.1
C3—C4—C6120.0 (3)C12—C11—C10118.9 (3)
C3—C4—H4120C12—C11—H11120.5
C6—C4—H4120C10—C11—H11120.5
C1—C5—C6118.7 (3)C11—C12—C13121.0 (3)
C1—C5—C7120.5 (3)C11—C12—Cl1119.4 (3)
C6—C5—C7120.8 (3)C13—C12—Cl1119.5 (3)
O1—C6—C4118.7 (3)C12—C13—C14119.1 (3)
O1—C6—C5121.8 (2)C12—C13—H13120.4
C4—C6—C5119.5 (3)C14—C13—H13120.4
N1—C7—C5122.3 (3)C9—C14—C13121.8 (3)
N1—C7—H7118.9C9—C14—H14119.1
C5—C7—H7118.9C13—C14—H14119.1
N1—C8—C9109.8 (3)C7—N1—C8119.2 (3)
N1—C8—H8A109.7C6—O1—H1A109.5
C9—C8—H8A109.7
C5—C1—C2—C3−0.4 (5)N1—C8—C9—C10−76.8 (4)
C1—C2—C3—C40.3 (5)C14—C9—C10—C11−1.2 (4)
C2—C3—C4—C6−0.3 (5)C8—C9—C10—C11178.4 (3)
C2—C1—C5—C60.5 (4)C9—C10—C11—C120.0 (4)
C2—C1—C5—C7−179.5 (3)C10—C11—C12—C131.1 (4)
C3—C4—C6—O1179.9 (3)C10—C11—C12—Cl1−178.8 (2)
C3—C4—C6—C50.3 (4)C11—C12—C13—C14−0.8 (4)
C1—C5—C6—O1−179.9 (2)Cl1—C12—C13—C14179.1 (2)
C7—C5—C6—O10.1 (4)C10—C9—C14—C131.5 (4)
C1—C5—C6—C4−0.4 (4)C8—C9—C14—C13−178.1 (3)
C7—C5—C6—C4179.6 (2)C12—C13—C14—C9−0.6 (5)
C1—C5—C7—N1−179.4 (3)C5—C7—N1—C8179.8 (3)
C6—C5—C7—N10.6 (4)C9—C8—N1—C7−124.3 (3)
N1—C8—C9—C14102.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.862.587 (3)147.
C11—H11···O1i0.932.533.369 (4)150.

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2046).

References

  • Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem.49, 7242–7246. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [PubMed]
  • Khalaji, A. D. & Simpson, J. (2009). Acta Cryst. E65, o362. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography