PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2250–o2251.
Published online 2010 August 11. doi:  10.1107/S1600536810030941
PMCID: PMC3007857

Bis(4-amino­pyridinium) sulfate monohydrate

Abstract

The asymmetric unit of the title compound, 2C5H7N2 +·SO4 2−·H2O, contains two 4-amino­pyridinium cations (A and B), a sulfate dianion and a water mol­ecule. One of the 4-amino­pyridinium cations (B) is disordered over two orientations with refined site occupancies of 0.568 (4) and 0.432 (4). The non-H atoms of the 4-amino­pyridinium cations are essentially coplanar, with a maximum deviation of 0.055 (1) Å (in cation A), 0.022 (3) Å (for the major component in cation B) and 0.009 (3) Å (for the minor component in cation B). In the crystal, the sulfate O atoms link the 4-amino­pyridinium cations and water mol­ecules into a three-dimensional network via inter­molecular O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds. The crystal structure is further consolidated by N—H(...)O(water) and C—H(...)O(water) hydrogen bonds.

Related literature

For general background to and the applications of the title compound, see: Judge & Bever (2006 [triangle]); Schwid et al. (1997 [triangle]); Strupp et al. (2004 [triangle]); Onoda et al. (2001 [triangle]); Zhang et al. (2004 [triangle]); Pflugrath & Quiocho, (1985 [triangle]); Jacobson & Quiocho (1988 [triangle]). For related structures, see: Quah et al. (2008a [triangle],b [triangle], 2010 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2250-scheme1.jpg

Experimental

Crystal data

  • 2C5H7N2 +·SO4 2−·H2O
  • M r = 304.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2250-efi1.jpg
  • a = 6.4434 (1) Å
  • b = 8.4153 (1) Å
  • c = 12.4488 (2) Å
  • α = 96.365 (1)°
  • β = 97.534 (1)°
  • γ = 95.387 (1)°
  • V = 661.02 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 100 K
  • 0.33 × 0.25 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.916, T max = 0.981
  • 10717 measured reflections
  • 3839 independent reflections
  • 3279 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.106
  • S = 1.06
  • 3839 reflections
  • 259 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810030941/bt5310sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810030941/bt5310Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM fellowship. AMI thanks the Head of the Department of Chemistry Department and the Director of the National Institute of Technology–Karnataka for their encouragement. AMI also thanks Universiti Sains Malaysia for the partial sponsorship of a visit to the X-ray Crystallography Unit.

supplementary crystallographic information

Comment

4-Aminopyridine (fampridine) is clinically used in the treatment of Lambert-Eaton myasthenic syndrome and multiple sclerosis. It prolongs action potentials by blocking potassium channels, thereby increases transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid et al., 1997; Strupp et al., 2004). Hydrogen bonding patterns involving sulfate and sulfonate groups in biological systems and metal complexes are also of current interest (Onoda et al., 2001). Benzoic acid and sulfuric acid form a stable hydrogen-bonded complex that favors aerosol formation in the atmosphere (Zhang et al., 2004). In a sulfate-binding protein, the sulfate anion is mainly bonded by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). The present study is aimed at understanding the hydrogen bonding network in the title compound (I).

The asymmetric unit of (I) contains two 4-aminopyridinium cations (A and B), a sulfate anion and a water molecule (Fig 1). The 4-aminopyridinium cation in molecule B is disordered over two positions with refined site-occupancies of 0.568 (4) and 0.432 (4). In the 4-aminopyridinium cations, the protonation of atoms N1 (molecule A), N1A (major component in molecule B) and N1B (minor component in molecule B) have lead to slight increase in C–N–C angles to 120.88 (13), 120.9 (4) and 119.7 (5)°, respectively. The non-H atoms of the 4-aminopyridinium cations are essentially co-planar, with a maximum deviation of 0.055 (1) Å for atom N2, 0.022 (3) Å for atom N2A and 0.009 (3) Å for atom N2B. The bond lengths (Allen et al., 1987) and angles are normal and comparable to the related structures (Quah et al., 2008a,b; 2010). The pyridine ring (N1/C1—C5) in molecule A makes dihedral angles of 68.46 (19) and 70.1 (2)°, respectively, with N1A/C1A—C5A and N1B/C1B—C5B rings.

In the crystal packing (Fig. 2), oxygen atoms (O1, O2, O3 and O4) in sulfate anions link the 4-aminopyridinium cations and water molecules into three-dimensional network via intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds (Table 1). The crystal structure is further consolidated by N2A–H1NA···O1W and C1A–H1AA···O1W hydrogen bonds.

Experimental

Few drops of concentrated sulfuric acid were added to a hot methanol solution of 4-aminopyridine (47 mg, Aldrich). The solution was warmed over a water bath for 1 h. The resulting solution was allowed to cool slowly to room temperature. Colourless crystals appeared from the mother liquor after a few days. Yield 60%.

Refinement

Atoms H1NA, H2NA, H1NB, H2NB, H1AB and H1BA were located in a difference Fourier map and refined using a riding model with N–H = 0.7856 – 0.8900 Å. The remaining O– and N– bound H atoms were located in a difference Fourier map and allowed to refine freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). One of the 4-aminopyridinium cations is disordered over two positions with refined site-occupancies of 0.568 (4) and 0.432 (4). The same Uij parameters were used for atom pair C1A/C2A. The highest residual electron density peak is located at 0.72 Å from O1W and the deepest hole is located at 0.68 Å from O1W.

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both disordered components are shown.
Fig. 2.
The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity. Only major disorder component is shown.

Crystal data

2C5H7N2+·SO42·H2OZ = 2
Mr = 304.33F(000) = 320
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4434 (1) ÅCell parameters from 3597 reflections
b = 8.4153 (1) Åθ = 3.1–30.1°
c = 12.4488 (2) ŵ = 0.27 mm1
α = 96.365 (1)°T = 100 K
β = 97.534 (1)°Plate, colourless
γ = 95.387 (1)°0.33 × 0.25 × 0.07 mm
V = 661.02 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3839 independent reflections
Radiation source: fine-focus sealed tube3279 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −9→9
Tmin = 0.916, Tmax = 0.981k = −11→11
10717 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4122P] where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.41695 (5)0.12500 (4)0.29301 (3)0.01520 (10)
O40.28974 (17)0.13054 (13)0.38487 (9)0.0210 (2)
O30.52927 (17)0.28476 (13)0.29263 (10)0.0217 (2)
O20.56565 (18)0.00390 (14)0.30613 (10)0.0256 (3)
O10.27120 (18)0.08095 (15)0.18901 (10)0.0277 (3)
N2−0.0310 (2)0.34101 (15)0.35023 (11)0.0172 (2)
C50.2971 (2)0.72142 (18)0.42897 (12)0.0182 (3)
H5A0.43730.76070.45270.022*
N10.1519 (2)0.82613 (16)0.41396 (11)0.0192 (3)
C30.0277 (2)0.49838 (17)0.37303 (11)0.0144 (3)
C2−0.1204 (2)0.61239 (18)0.36079 (12)0.0168 (3)
H2A−0.26250.57750.33920.020*
O1W0.8386 (2)0.96841 (16)0.15025 (14)0.0355 (3)
C40.2413 (2)0.55943 (17)0.40997 (11)0.0160 (3)
H4A0.34280.48910.42120.019*
C1−0.0540 (2)0.77280 (18)0.38069 (12)0.0189 (3)
H1A−0.15140.84670.37130.023*
C2A0.7722 (12)0.4735 (7)1.0588 (7)0.0238 (7)0.568 (4)
H2AA0.80190.53111.12820.029*0.568 (4)
C1A0.7613 (4)0.3094 (4)1.0482 (3)0.0238 (7)0.568 (4)
H1AA0.78540.25671.10970.029*0.568 (4)
C5A0.6790 (11)0.2982 (7)0.8591 (6)0.0237 (11)0.568 (4)
H5AA0.64610.23700.79100.028*0.568 (4)
C4A0.6891 (9)0.4594 (7)0.8661 (5)0.0175 (10)0.568 (4)
H4AA0.66240.50820.80300.021*0.568 (4)
N2A0.7527 (4)0.7162 (3)0.9771 (2)0.0185 (6)0.568 (4)
H2NA0.72860.75150.91600.028*0.568 (4)
H1NA0.77700.76721.03500.028*0.568 (4)
C3A0.7401 (4)0.5559 (4)0.9691 (2)0.0134 (6)0.568 (4)
N1A0.7155 (4)0.2243 (4)0.9482 (3)0.0263 (7)0.568 (4)
H1AB0.70390.12170.93500.032*0.568 (4)
N2B0.7174 (5)0.1525 (5)0.9860 (3)0.0219 (8)0.432 (4)
H1NB0.75420.11781.05000.033*0.432 (4)
H2NB0.71060.08550.93120.033*0.432 (4)
C1B0.7723 (6)0.5882 (5)1.0409 (4)0.0270 (10)0.432 (4)
H1BB0.78210.67601.08680.040*0.432 (4)
N1B0.7377 (5)0.6283 (6)0.9395 (4)0.0257 (9)0.432 (4)
H1BA0.74210.72790.92940.038*0.432 (4)
C3B0.7256 (5)0.3062 (6)0.9719 (3)0.0173 (8)0.432 (4)
C4B0.6880 (12)0.3543 (9)0.8640 (6)0.0168 (13)0.432 (4)
H4BA0.65840.27710.80300.020*0.432 (4)
C5B0.6959 (13)0.5103 (9)0.8524 (7)0.0208 (13)0.432 (4)
H5BA0.67210.54000.78240.025*0.432 (4)
C2B0.7688 (12)0.4344 (6)1.0631 (6)0.0153 (12)0.432 (4)
H2BA0.79320.41121.13470.018*0.432 (4)
H1W10.750 (5)0.985 (4)0.201 (3)0.067 (9)*
H2W10.963 (5)1.006 (3)0.172 (2)0.054 (8)*
H1N10.193 (3)0.929 (3)0.4163 (18)0.033 (6)*
H1N20.061 (4)0.275 (3)0.3623 (17)0.031 (6)*
H2N2−0.163 (3)0.309 (2)0.3310 (16)0.023 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01105 (16)0.01034 (16)0.02362 (18)0.00082 (11)0.00082 (12)0.00180 (12)
O40.0194 (5)0.0152 (5)0.0305 (6)0.0027 (4)0.0077 (4)0.0058 (4)
O30.0194 (5)0.0141 (5)0.0311 (6)−0.0032 (4)0.0040 (4)0.0044 (4)
O20.0208 (6)0.0197 (5)0.0401 (7)0.0100 (4)0.0077 (5)0.0098 (5)
O10.0191 (5)0.0286 (6)0.0303 (6)0.0024 (5)−0.0056 (5)−0.0071 (5)
N20.0142 (6)0.0140 (6)0.0232 (6)0.0016 (5)0.0031 (5)0.0004 (5)
C50.0158 (6)0.0202 (7)0.0181 (6)−0.0016 (5)0.0036 (5)0.0021 (5)
N10.0226 (6)0.0137 (6)0.0217 (6)−0.0008 (5)0.0062 (5)0.0027 (5)
C30.0158 (6)0.0156 (6)0.0123 (6)0.0011 (5)0.0036 (5)0.0026 (5)
C20.0152 (6)0.0182 (7)0.0176 (6)0.0024 (5)0.0028 (5)0.0032 (5)
O1W0.0192 (6)0.0249 (6)0.0622 (10)0.0008 (5)0.0094 (6)0.0017 (6)
C40.0145 (6)0.0175 (7)0.0163 (6)0.0025 (5)0.0024 (5)0.0029 (5)
C10.0206 (7)0.0169 (7)0.0210 (7)0.0049 (5)0.0052 (5)0.0048 (5)
C2A0.0165 (11)0.0299 (17)0.0289 (14)0.0066 (10)0.0065 (9)0.0130 (11)
C1A0.0165 (11)0.0299 (17)0.0289 (14)0.0066 (10)0.0065 (9)0.0130 (11)
C5A0.0209 (17)0.016 (3)0.0340 (19)0.003 (2)0.0088 (13)−0.005 (2)
C4A0.0193 (15)0.015 (3)0.0171 (19)0.001 (2)0.0023 (12)−0.0004 (19)
N2A0.0209 (11)0.0122 (13)0.0214 (11)0.0026 (8)0.0036 (8)−0.0034 (9)
C3A0.0089 (11)0.0152 (14)0.0161 (15)0.0024 (9)0.0029 (9)0.0000 (11)
N1A0.0228 (13)0.0104 (15)0.0475 (19)0.0020 (11)0.0117 (12)0.0029 (15)
N2B0.0266 (17)0.0202 (18)0.0188 (15)0.0024 (13)0.0015 (12)0.0037 (13)
C1B0.0173 (18)0.025 (2)0.036 (3)−0.0006 (14)0.0071 (16)−0.0072 (18)
N1B0.0165 (16)0.015 (2)0.047 (2)0.0037 (13)0.0092 (14)0.004 (2)
C3B0.0114 (15)0.020 (2)0.020 (2)0.0028 (14)0.0025 (12)0.0010 (16)
C4B0.019 (2)0.018 (4)0.016 (2)0.005 (3)0.0026 (15)0.007 (3)
C5B0.018 (2)0.017 (4)0.030 (3)0.007 (3)0.0061 (17)0.008 (2)
C2B0.0112 (16)0.029 (3)0.0062 (16)0.004 (2)0.0031 (12)0.002 (2)

Geometric parameters (Å, °)

S1—O31.4666 (11)C5A—N1A1.335 (9)
S1—O21.4706 (11)C5A—C4A1.345 (5)
S1—O11.4849 (12)C5A—H5AA0.9300
S1—O41.4909 (12)C4A—C3A1.422 (6)
N2—C31.3311 (18)C4A—H4AA0.9300
N2—H1N20.86 (2)N2A—C3A1.335 (4)
N2—H2N20.86 (2)N2A—H2NA0.8477
C5—N11.354 (2)N2A—H1NA0.7856
C5—C41.363 (2)N1A—H1AB0.8555
C5—H5A0.9300N2B—C3B1.321 (6)
N1—C11.355 (2)N2B—H1NB0.8900
N1—H1N10.88 (2)N2B—H2NB0.8295
C3—C41.4208 (19)C1B—N1B1.339 (6)
C3—C21.421 (2)C1B—C2B1.352 (6)
C2—C11.362 (2)C1B—H1BB0.8750
C2—H2A0.9300N1B—C5B1.367 (11)
O1W—H1W10.91 (3)N1B—H2NA1.1125
O1W—H2W10.83 (3)N1B—H1BA0.8600
C4—H4A0.9300C3B—C4B1.443 (8)
C1—H1A0.9300C3B—C2B1.456 (8)
C2A—C1A1.366 (6)C4B—C5B1.334 (7)
C2A—C3A1.381 (8)C4B—H4BA0.9300
C2A—H2AA0.9300C5B—H5BA0.9300
C1A—N1A1.347 (5)C2B—H2BA0.9300
C1A—H1AA0.9300
O3—S1—O2110.89 (7)H1NA—N2A—H1BB46.1
O3—S1—O1109.12 (7)C3A—N2A—H1BA102.2
O2—S1—O1109.99 (7)H1NA—N2A—H1BA138.1
O3—S1—O4109.09 (7)H1BB—N2A—H1BA175.5
O2—S1—O4109.35 (7)N2A—C3A—C2A122.9 (4)
O1—S1—O4108.35 (7)N2A—C3A—C4A121.2 (4)
C3—N2—H1N2119.4 (15)C2A—C3A—C4A115.9 (4)
C3—N2—H2N2118.3 (13)C2A—C3A—H1BA145.0
H1N2—N2—H2N2121.9 (19)C4A—C3A—H1BA99.1
N1—C5—C4121.14 (13)C5A—N1A—C1A120.9 (4)
N1—C5—H5A119.4C5A—N1A—H1AB113.9
C4—C5—H5A119.4C1A—N1A—H1AB125.2
C5—N1—C1120.88 (13)C5A—N1A—H2NB114.7
C5—N1—H1N1119.8 (15)C1A—N1A—H2NB124.4
C1—N1—H1N1118.7 (14)C3B—N2B—H1AB98.6
N2—C3—C4121.37 (13)C3B—N2B—H1NB123.7
N2—C3—C2121.41 (13)H1AB—N2B—H1NB136.0
C4—C3—C2117.21 (13)C3B—N2B—H2NB117.9
C1—C2—H2A120.0H1NB—N2B—H2NB116.1
C3—C2—H2A120.0N1B—C1B—C2B123.4 (5)
H1W1—O1W—H2W1114 (3)N1B—C1B—H1NA65.4
C5—C4—C3119.81 (13)C2B—C1B—H1NA171.1
C5—C4—H4A120.1N1B—C1B—H1BB108.0
C3—C4—H4A120.1C2B—C1B—H1BB128.3
N1—C1—C2120.94 (14)C1B—N1B—C5B119.7 (5)
N1—C1—H1A119.5C1B—N1B—H2NA126.9
C2—C1—H1A119.5C5B—N1B—H2NA113.3
C1A—C2A—C3A121.7 (7)C1B—N1B—H1BA120.0
C1A—C2A—H2AA119.1C5B—N1B—H1BA120.3
C3A—C2A—H2AA119.1N2B—C3B—C4B120.9 (5)
N1A—C1A—C2A119.7 (5)N2B—C3B—C2B122.3 (4)
N1A—C1A—H1AA120.1C4B—C3B—C2B116.8 (5)
C2A—C1A—H1AA120.1C4B—C3B—H1AB96.6
N1A—C5A—C4A121.2 (6)C2B—C3B—H1AB146.6
N1A—C5A—H5AA119.4C5B—C4B—C3B119.5 (6)
C4A—C5A—H5AA119.4C5B—C4B—H4BA120.2
C5A—C4A—C3A120.6 (5)C3B—C4B—H4BA120.2
C5A—C4A—H4AA119.7C4B—C5B—N1B122.4 (7)
C3A—C4A—H4AA119.7C4B—C5B—H5BA118.8
C3A—N2A—H2NA113.5N1B—C5B—H5BA118.8
C3A—N2A—H1NA119.5C1B—C2B—C3B118.2 (5)
H2NA—N2A—H1NA127.0C1B—C2B—H2BA120.9
C3A—N2A—H1BB73.5C3B—C2B—H2BA120.9
H2NA—N2A—H1BB172.0
C4—C5—N1—C10.7 (2)C5A—C4A—C3A—N2A179.3 (4)
N2—C3—C2—C1−177.42 (14)C5A—C4A—C3A—C2A−1.6 (7)
C4—C3—C2—C12.2 (2)C4A—C5A—N1A—C1A0.7 (7)
N1—C5—C4—C30.4 (2)C2A—C1A—N1A—C5A−0.5 (7)
N2—C3—C4—C5177.75 (13)C2B—C1B—N1B—C5B0.1 (8)
C2—C3—C4—C5−1.9 (2)N2B—C3B—C4B—C5B179.5 (5)
C5—N1—C1—C2−0.4 (2)C2B—C3B—C4B—C5B0.6 (8)
C3—C2—C1—N1−1.1 (2)C3B—C4B—C5B—N1B−0.3 (10)
C3A—C2A—C1A—N1A−0.9 (8)C1B—N1B—C5B—C4B0.0 (9)
N1A—C5A—C4A—C3A0.3 (8)N1B—C1B—C2B—C3B0.2 (8)
C1A—C2A—C3A—N2A−179.1 (4)N2B—C3B—C2B—C1B−179.4 (5)
C1A—C2A—C3A—C4A1.8 (8)C4B—C3B—C2B—C1B−0.5 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1i0.852.032.822 (3)156.
N2A—H1NA···O1Wii0.792.072.812 (3)159.
N1A—H1AB···O1iii0.862.202.938 (4)144.
O1W—H1W1···O2iv0.91 (3)1.88 (3)2.7952 (19)176 (3)
O1W—H2W1···O1v0.83 (3)2.00 (3)2.8195 (18)167 (2)
N1—H1N1···O4iv0.88 (3)1.85 (2)2.7102 (17)165 (2)
N2—H1N2···O40.86 (3)2.01 (3)2.8665 (17)176 (2)
N2—H2N2···O3vi0.862 (19)1.96 (2)2.8118 (17)167.9 (16)
C1—H1A···O2vii0.932.463.3688 (18)167.
C1A—H1AA···O1Wviii0.932.583.318 (4)137.
C5A—H5AA···O2iii0.932.443.228 (7)143.
C4A—H4AA···O3i0.932.543.362 (6)147.
C5—H5A···O4i0.932.523.3360 (18)146.

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x−1, y, z; (vii) x−1, y+1, z; (viii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5310).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Jacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol.204, 783–787. [PubMed]
  • Judge, S. & Bever, C. (2006). Pharmacol. Ther.111, 224–259. [PubMed]
  • Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem.40, 516–521. [PubMed]
  • Pflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257–260. [PubMed]
  • Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1933–o1934. [PMC free article] [PubMed]
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879. [PMC free article] [PubMed]
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230. [PMC free article] [PubMed]
  • Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625. [PubMed]
  • Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T. & Molina, M. J. (2004). Science, 304, 1487–1490. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography