PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): m1096–m1097.
Published online 2010 August 18. doi:  10.1107/S1600536810031612
PMCID: PMC3007852

Diaqua­bis­(5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)manganese(II) 3.5-hydrate

Abstract

In the title complex, [Mn(C8H9N2O4)2(H2O)2]·3.5H2O, the MnII cation is six-coordinated by two N,O-bidentate H2pimda ligands (H2pimda = 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate) and two water mol­ecules in a distorted octa­hedral environment. The complete solid-state structure can be described as a three-dimensional supra­molecular framework stabilized by a wide range of O—H(...)O and N—H(...)O hydrogen bonds. The propyl groups of H2pimda are disordered over two sets of sites with refined occupancies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7).

Related literature

For our previous structural studies of complexes with H2pimda, see: Yan et al. (2010 [triangle]); Li et al. (2010 [triangle]); Song et al.(2010 [triangle]); He et al. (2010 [triangle]); Fan et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1096-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H9N2O4)2(H2O)2]·3.5H2O
  • M r = 548.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1096-efi1.jpg
  • a = 10.609 (6) Å
  • b = 10.649 (6) Å
  • c = 11.424 (7) Å
  • α = 82.748 (8)°
  • β = 82.544 (7)°
  • γ = 86.857 (7)°
  • V = 1268.5 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 296 K
  • 0.31 × 0.26 × 0.21 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.838, T max = 0.886
  • 6656 measured reflections
  • 4508 independent reflections
  • 2551 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.152
  • S = 1.00
  • 4508 reflections
  • 342 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810031612/jh2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810031612/jh2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Non-profit Industry Found­ation of the National Ocean Administration of China (grant No. 2000905021), Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), Guangdong Province Key Project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No.00087061110314018) and the Guangdong Natural Science Foundation (No.9252408801000002).

supplementary crystallographic information

Comment

There is considerable interest in the design and synthesis of metal-organic frameworks (MOFs) due to their potential applications in conductivity, luminescence, catalysis, magnetism and sensors as well as fascinating architectures and topologies. 2-propyl-1H-imidazole-4,5-carboxylate(H3pimda) ligand as one derivative of H3IDC with efficient N,O-donors has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)](Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide(Yan et al., 2010), [Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4)nickle(II)]N,N-dimethylformamide disolvate(Li et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate(He et al., 2010) and Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickle(II) tetrahedrate(Fan et al., 2010). In this paper, we report the structure of a new Mn(II) complex obtained under hydrothermal conditions.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II) analog(Fan et al., 2010). Similar structural description applies to the present isomorphous complex. The MnII is six-coordinated by two N,O-bidentate H3pimda anions and two water molecules, and exhibits a distorted octahedral geometry. The carboxylic acid ligand bears a formal charge of -1, and the free carboxylate atoms O1 and O4, O6 and O7 form intramolecular hydrogen bonds, respectively. The dihedral angle between the two imidazole rings is 77.2 (8) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds involving the free water molecules, the coordinated water molecules, the carboxy O atoms and the protonated N atoms of H3pimda. The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7).

Experimental

A mixture of Mncl2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of H2O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433k for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.759 (5):0.241 (5) and 0.545 (7):0.455 (7). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Crystal data

[Mn(C8H9N2O4)2(H2O)2]·3.5H2OZ = 2
Mr = 548.37F(000) = 572
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.609 (6) ÅCell parameters from 3600 reflections
b = 10.649 (6) Åθ = 1.4–25.0°
c = 11.424 (7) ŵ = 0.59 mm1
α = 82.748 (8)°T = 296 K
β = 82.544 (7)°Block, colorless
γ = 86.857 (7)°0.31 × 0.26 × 0.21 mm
V = 1268.5 (13) Å3

Data collection

Bruker APEXII area-detector diffractometer4508 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −12→12
Tmin = 0.838, Tmax = 0.886k = −12→12
6656 measured reflectionsl = −13→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2346P] where P = (Fo2 + 2Fc2)/3
4508 reflections(Δ/σ)max = 0.009
342 parametersΔρmax = 0.32 e Å3
5 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.84879 (6)0.29330 (6)0.19294 (6)0.0505 (2)
O10.8746 (4)−0.1883 (3)0.5157 (3)0.0718 (10)
H10.8701−0.16260.44550.108*
O20.8374 (3)−0.1110 (3)0.6882 (3)0.0724 (10)
O30.8872 (3)0.0868 (3)0.1898 (3)0.0582 (8)
O40.8969 (3)−0.1020 (3)0.2997 (3)0.0662 (9)
O50.7711 (3)0.4910 (3)0.2083 (3)0.0564 (8)
O60.6057 (3)0.6263 (3)0.1848 (3)0.0691 (10)
O70.3863 (3)0.6187 (3)0.1382 (3)0.0641 (9)
H60.45810.61820.15770.096*
O80.2555 (3)0.4775 (3)0.0983 (3)0.0642 (9)
N10.8290 (3)0.2105 (3)0.3841 (3)0.0500 (9)
N20.8112 (3)0.1375 (4)0.5753 (3)0.0585 (10)
H20.79910.14510.65160.070*
N30.6401 (3)0.2898 (3)0.1720 (3)0.0460 (9)
N40.4436 (3)0.2822 (3)0.1290 (3)0.0505 (9)
H40.37760.24680.11110.061*
C10.8355 (4)0.0337 (4)0.5152 (4)0.0440 (10)
C20.8473 (3)0.0802 (4)0.3970 (4)0.0419 (10)
C30.8087 (5)0.2420 (4)0.4943 (4)0.0604 (13)
C40.8790 (4)0.0165 (4)0.2877 (4)0.0496 (11)
C50.8483 (4)−0.0942 (5)0.5799 (5)0.0554 (12)
C6A0.7996 (11)0.3774 (11)0.5220 (13)0.084 (3)0.759 (5)
H6A0.83140.38100.59730.100*0.759 (5)
H6B0.85280.42880.46080.100*0.759 (5)
C7A0.6680 (8)0.4301 (7)0.5284 (8)0.100 (3)0.759 (5)
H7A0.61690.38630.59640.120*0.759 (5)
H7B0.63210.41680.45730.120*0.759 (5)
C8A0.6635 (9)0.5741 (7)0.5402 (9)0.137 (4)0.759 (5)
H8A0.57790.60130.56650.206*0.759 (5)
H8B0.69140.62020.46430.206*0.759 (5)
H8C0.71830.58970.59690.206*0.759 (5)
C6B0.747 (4)0.358 (4)0.541 (5)0.084 (3)0.241 (5)
H6C0.68220.39360.49320.100*0.241 (5)
H6D0.70790.33760.62240.100*0.241 (5)
C7B0.846 (2)0.452 (3)0.538 (2)0.100 (3)0.241 (5)
H7C0.80670.53500.54790.120*0.241 (5)
H7D0.89900.45840.46120.120*0.241 (5)
C8B0.929 (3)0.410 (2)0.638 (3)0.137 (4)0.241 (5)
H8D0.98550.47670.64330.206*0.241 (5)
H8E0.97880.33510.62070.206*0.241 (5)
H8F0.87590.39330.71200.206*0.241 (5)
C90.5827 (4)0.4087 (4)0.1688 (4)0.0412 (10)
C100.4601 (4)0.4059 (4)0.1419 (4)0.0432 (10)
C110.5528 (4)0.2139 (4)0.1468 (4)0.0515 (11)
C120.6575 (4)0.5144 (4)0.1884 (4)0.0507 (11)
C130.3590 (4)0.5048 (4)0.1255 (4)0.0526 (12)
C14A0.559 (3)0.0724 (6)0.1680 (13)0.061 (3)0.545 (7)
H14A0.64470.04130.14360.073*0.545 (7)
H14B0.50230.03910.12020.073*0.545 (7)
C15A0.5196 (17)0.0242 (9)0.3025 (12)0.093 (4)0.545 (7)
H15A0.57250.06070.35160.111*0.545 (7)
H15B0.43150.04880.32630.111*0.545 (7)
C16A0.5371 (12)−0.1179 (9)0.3172 (12)0.107 (4)0.545 (7)
H16A0.5074−0.15080.39760.160*0.545 (7)
H16B0.6257−0.14100.29960.160*0.545 (7)
H16C0.4894−0.15240.26370.160*0.545 (7)
C14B0.578 (3)0.0799 (8)0.1201 (18)0.061 (3)0.455 (7)
H14C0.66680.05600.12410.073*0.455 (7)
H14D0.55940.07310.04020.073*0.455 (7)
C15B0.4928 (12)−0.0126 (12)0.2116 (12)0.093 (4)0.455 (7)
H15C0.40390.01230.20830.111*0.455 (7)
H15D0.5061−0.09790.18970.111*0.455 (7)
C16B0.523 (2)−0.0117 (16)0.3355 (14)0.107 (4)0.455 (7)
H16D0.5291−0.09710.37360.160*0.455 (7)
H16E0.45760.03520.37930.160*0.455 (7)
H16F0.60320.02740.33320.160*0.455 (7)
O1W0.8931 (3)0.3345 (3)0.0048 (3)0.0828 (11)
H1W0.90990.2672−0.02800.124*
H2W0.85680.3968−0.03360.124*
O2W1.0434 (3)0.3326 (3)0.2140 (3)0.0849 (12)
H3W1.08670.39430.17870.127*
H4W1.09290.26990.23280.127*
O3W0.9127 (6)0.0143 (5)0.9610 (5)0.0656 (17)0.50
H5W0.99300.00180.95320.098*0.50
H6W0.90680.01431.03640.098*0.50
O4W0.7778 (4)0.1620 (4)0.8153 (4)0.1275 (17)
H7W0.83160.11630.85230.191*
H8W0.73260.22870.82730.191*
O5W0.1048 (3)0.2730 (3)0.8677 (3)0.0828 (11)
H9W0.15430.32900.83090.124*
H10W0.11010.21200.82560.124*
O6W0.2622 (3)0.1565 (4)0.0418 (4)0.1110 (15)
H11W0.21520.09280.05460.167*
H12W0.20630.21520.02920.167*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0448 (4)0.0542 (5)0.0498 (5)0.0021 (3)−0.0097 (3)0.0064 (3)
O10.091 (2)0.051 (2)0.071 (3)0.0000 (18)−0.019 (2)0.0070 (18)
O20.073 (2)0.082 (2)0.052 (2)0.0119 (18)−0.0074 (18)0.0235 (18)
O30.065 (2)0.062 (2)0.044 (2)0.0122 (16)−0.0093 (16)0.0003 (16)
O40.094 (2)0.049 (2)0.058 (2)0.0116 (17)−0.0190 (18)−0.0090 (16)
O50.0510 (18)0.0522 (19)0.068 (2)−0.0029 (14)−0.0201 (16)−0.0028 (16)
O60.064 (2)0.050 (2)0.096 (3)0.0058 (16)−0.0150 (19)−0.0153 (18)
O70.0532 (19)0.057 (2)0.081 (3)0.0147 (16)−0.0147 (18)−0.0039 (18)
O80.0415 (17)0.072 (2)0.074 (2)0.0008 (16)−0.0118 (16)0.0119 (17)
N10.051 (2)0.054 (2)0.043 (2)0.0040 (17)−0.0077 (18)−0.0020 (18)
N20.063 (2)0.070 (3)0.041 (2)0.007 (2)−0.0037 (19)−0.008 (2)
N30.046 (2)0.040 (2)0.051 (2)0.0014 (16)−0.0115 (17)0.0029 (16)
N40.0364 (19)0.053 (2)0.061 (3)−0.0019 (17)−0.0159 (17)0.0055 (18)
C10.040 (2)0.048 (3)0.043 (3)0.0023 (19)−0.005 (2)0.000 (2)
C20.039 (2)0.042 (2)0.044 (3)0.0022 (18)−0.008 (2)−0.002 (2)
C30.078 (3)0.053 (3)0.049 (3)0.005 (2)−0.008 (3)−0.004 (2)
C40.044 (2)0.055 (3)0.051 (3)0.008 (2)−0.013 (2)−0.006 (2)
C50.047 (3)0.061 (3)0.055 (3)−0.002 (2)−0.013 (2)0.010 (3)
C6A0.125 (12)0.063 (6)0.060 (7)0.014 (7)−0.005 (8)−0.013 (5)
C7A0.122 (7)0.068 (5)0.106 (7)0.015 (5)−0.002 (5)−0.013 (5)
C8A0.177 (10)0.076 (6)0.154 (10)0.023 (6)0.001 (7)−0.025 (6)
C6B0.125 (12)0.063 (6)0.060 (7)0.014 (7)−0.005 (8)−0.013 (5)
C7B0.122 (7)0.068 (5)0.106 (7)0.015 (5)−0.002 (5)−0.013 (5)
C8B0.177 (10)0.076 (6)0.154 (10)0.023 (6)0.001 (7)−0.025 (6)
C90.041 (2)0.040 (2)0.041 (3)0.0010 (19)−0.0066 (19)0.0023 (19)
C100.043 (2)0.041 (3)0.042 (3)0.0043 (19)−0.0047 (19)0.0032 (19)
C110.045 (2)0.047 (3)0.062 (3)−0.002 (2)−0.013 (2)0.000 (2)
C120.054 (3)0.046 (3)0.052 (3)−0.001 (2)−0.007 (2)−0.003 (2)
C130.047 (3)0.057 (3)0.048 (3)0.002 (2)0.001 (2)0.008 (2)
C14A0.058 (8)0.042 (3)0.082 (12)0.002 (3)−0.023 (10)0.004 (4)
C15A0.073 (6)0.056 (6)0.143 (12)−0.005 (5)−0.023 (7)0.021 (6)
C16A0.116 (8)0.068 (6)0.133 (9)−0.005 (7)−0.022 (7)0.006 (7)
C14B0.058 (8)0.042 (3)0.082 (12)0.002 (3)−0.023 (10)0.004 (4)
C15B0.073 (6)0.056 (6)0.143 (12)−0.005 (5)−0.023 (7)0.021 (6)
C16B0.116 (8)0.068 (6)0.133 (9)−0.005 (7)−0.022 (7)0.006 (7)
O1W0.078 (2)0.097 (3)0.060 (2)0.036 (2)−0.0015 (18)0.0170 (19)
O2W0.052 (2)0.088 (3)0.105 (3)−0.0148 (18)−0.0197 (19)0.043 (2)
O3W0.072 (4)0.074 (4)0.051 (4)0.006 (3)−0.013 (3)−0.011 (3)
O4W0.156 (4)0.155 (4)0.078 (3)0.069 (3)−0.035 (3)−0.053 (3)
O5W0.073 (2)0.078 (2)0.100 (3)−0.0245 (19)0.013 (2)−0.035 (2)
O6W0.099 (3)0.108 (3)0.144 (4)0.006 (2)−0.064 (3)−0.038 (3)

Geometric parameters (Å, °)

Mn1—O1W2.134 (3)C6B—H6D0.9700
Mn1—O2W2.178 (3)C7B—C8B1.540 (13)
Mn1—O32.218 (3)C7B—H7C0.9700
Mn1—N12.237 (4)C7B—H7D0.9700
Mn1—O52.238 (3)C8B—H8D0.9600
Mn1—N32.260 (3)C8B—H8E0.9600
O1—C51.312 (5)C8B—H8F0.9600
O1—H10.8200C9—C101.377 (5)
O2—C51.219 (5)C9—C121.468 (6)
O3—C41.261 (5)C10—C131.474 (5)
O4—C41.259 (5)C11—C14A1.495 (7)
O5—C121.260 (5)C11—C14B1.499 (9)
O6—C121.283 (5)C14A—C15A1.567 (14)
O7—C131.292 (5)C14A—H14A0.9700
O7—H60.8200C14A—H14B0.9700
O8—C131.238 (5)C15A—C16A1.505 (11)
N1—C31.332 (5)C15A—H15A0.9700
N1—C21.382 (5)C15A—H15B0.9700
N2—C31.356 (5)C16A—H16A0.9600
N2—C11.369 (5)C16A—H16B0.9600
N2—H20.8771C16A—H16C0.9600
N3—C111.344 (5)C14B—C15B1.571 (14)
N3—C91.373 (5)C14B—H14C0.9700
N4—C111.358 (5)C14B—H14D0.9700
N4—C101.367 (5)C15B—C16B1.495 (12)
N4—H40.8708C15B—H15C0.9700
C1—C21.371 (6)C15B—H15D0.9700
C1—C51.474 (6)C16B—H16D0.9600
C2—C41.487 (6)C16B—H16E0.9600
C3—C6B1.50 (5)C16B—H16F0.9600
C3—C6A1.510 (12)O1W—H1W0.8500
C6A—C7A1.472 (14)O1W—H2W0.8500
C6A—H6A0.9700O2W—H3W0.8501
C6A—H6B0.9700O2W—H4W0.8500
C7A—C8A1.553 (9)O3W—H5W0.8499
C7A—H7A0.9700O3W—H6W0.8551
C7A—H7B0.9700O4W—H7W0.8500
C8A—H8A0.9600O4W—H8W0.8500
C8A—H8B0.9600O5W—H9W0.8500
C8A—H8C0.9600O5W—H10W0.8500
C6B—C7B1.482 (17)O6W—H11W0.8500
C6B—H6C0.9700O6W—H12W0.8500
O1W—Mn1—O2W89.56 (13)C8B—C7B—H7C109.8
O1W—Mn1—O393.19 (12)C6B—C7B—H7D109.8
O2W—Mn1—O394.68 (12)C8B—C7B—H7D109.8
O1W—Mn1—N1167.13 (13)H7C—C7B—H7D108.3
O2W—Mn1—N186.66 (12)C7B—C8B—H8D109.5
O3—Mn1—N174.89 (12)C7B—C8B—H8E109.5
O1W—Mn1—O591.53 (12)H8D—C8B—H8E109.5
O2W—Mn1—O595.47 (12)C7B—C8B—H8F109.5
O3—Mn1—O5168.84 (11)H8D—C8B—H8F109.5
N1—Mn1—O5101.07 (12)H8E—C8B—H8F109.5
O1W—Mn1—N389.97 (12)N3—C9—C10110.4 (3)
O2W—Mn1—N3169.81 (13)N3—C9—C12118.4 (3)
O3—Mn1—N395.51 (11)C10—C9—C12131.2 (4)
N1—Mn1—N395.91 (12)N4—C10—C9105.1 (3)
O5—Mn1—N374.37 (11)N4—C10—C13122.0 (4)
C5—O1—H1109.5C9—C10—C13132.9 (4)
C4—O3—Mn1118.1 (3)N3—C11—N4109.9 (4)
C12—O5—Mn1116.7 (3)N3—C11—C14A125.3 (13)
C13—O7—H6109.5N4—C11—C14A122.8 (12)
C3—N1—C2105.4 (3)N3—C11—C14B125.4 (15)
C3—N1—Mn1142.5 (3)N4—C11—C14B123.9 (15)
C2—N1—Mn1112.1 (3)C14A—C11—C14B21.4 (9)
C3—N2—C1108.2 (4)O5—C12—O6122.5 (4)
C3—N2—H2120.0O5—C12—C9118.2 (4)
C1—N2—H2131.8O6—C12—C9119.3 (4)
C11—N3—C9105.7 (3)O8—C13—O7123.3 (4)
C11—N3—Mn1141.8 (3)O8—C13—C10120.2 (4)
C9—N3—Mn1111.8 (3)O7—C13—C10116.4 (4)
C11—N4—C10108.9 (3)C11—C14A—C15A111.1 (7)
C11—N4—H4121.3C11—C14A—H14A109.4
C10—N4—H4129.8C15A—C14A—H14A109.4
N2—C1—C2105.5 (4)C11—C14A—H14B109.4
N2—C1—C5120.8 (4)C15A—C14A—H14B109.4
C2—C1—C5133.7 (4)H14A—C14A—H14B108.0
C1—C2—N1110.1 (4)C16A—C15A—C14A107.5 (10)
C1—C2—C4131.7 (4)C16A—C15A—H15A110.2
N1—C2—C4118.2 (4)C14A—C15A—H15A110.2
N1—C3—N2110.8 (4)C16A—C15A—H15B110.2
N1—C3—C6B131 (2)C14A—C15A—H15B110.2
N2—C3—C6B115 (2)H15A—C15A—H15B108.5
N1—C3—C6A123.2 (7)C11—C14B—C15B110.5 (12)
N2—C3—C6A125.7 (7)C11—C14B—H14C109.5
C6B—C3—C6A23.1 (13)C15B—C14B—H14C109.5
O4—C4—O3125.2 (4)C11—C14B—H14D109.5
O4—C4—C2118.1 (4)C15B—C14B—H14D109.5
O3—C4—C2116.8 (4)H14C—C14B—H14D108.1
O2—C5—O1121.7 (4)C16B—C15B—C14B111.5 (16)
O2—C5—C1121.2 (5)C16B—C15B—H15C109.3
O1—C5—C1117.0 (4)C14B—C15B—H15C109.3
C7A—C6A—C3112.0 (8)C16B—C15B—H15D109.3
C7A—C6A—H6A109.2C14B—C15B—H15D109.3
C3—C6A—H6A109.2H15C—C15B—H15D108.0
C7A—C6A—H6B109.2C15B—C16B—H16D109.5
C3—C6A—H6B109.2C15B—C16B—H16E109.5
H6A—C6A—H6B107.9H16D—C16B—H16E109.5
C6A—C7A—C8A111.0 (8)C15B—C16B—H16F109.5
C6A—C7A—H7A109.4H16D—C16B—H16F109.5
C8A—C7A—H7A109.4H16E—C16B—H16F109.5
C6A—C7A—H7B109.4Mn1—O1W—H1W111.4
C8A—C7A—H7B109.4Mn1—O1W—H2W121.1
H7A—C7A—H7B108.0H1W—O1W—H2W118.1
C7B—C6B—C3109 (3)Mn1—O2W—H3W127.0
C7B—C6B—H6C110.0Mn1—O2W—H4W117.6
C3—C6B—H6C110.0H3W—O2W—H4W109.8
C7B—C6B—H6D110.0H5W—O3W—H6W93.8
C3—C6B—H6D110.0H7W—O4W—H8W135.3
H6C—C6B—H6D108.3H9W—O5W—H10W106.9
C6B—C7B—C8B109 (3)H11W—O6W—H12W99.7
C6B—C7B—H7C109.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O40.821.702.507 (5)167.
O7—H6···O60.821.642.462 (4)175.
N2—H2···O4W0.881.882.762 (6)179.
N4—H4···O6W0.871.902.758 (5)166.
O1W—H1W···O5Wi0.852.252.667 (4)110.
O1W—H2W···O8ii0.851.892.724 (4)168.
O2W—H3W···O8iii0.852.092.878 (4)153.
O2W—H4W···O2iv0.851.972.791 (4)163.
O3W—H5W···O3Wv0.851.482.149 (12)133.
O3W—H5W···O3iv0.852.212.811 (6)128.
O3W—H6W···O3vi0.861.982.793 (7)157.
O4W—H7W···O3W0.851.822.646 (7)165.
O4W—H8W···O7vii0.852.052.897 (5)176.
O5W—H9W···O5vii0.852.092.885 (4)156.
O5W—H9W···O6vii0.852.593.266 (5)137.
O5W—H10W···O4viii0.851.972.804 (4)166.
O6W—H11W···O3Wviii0.851.862.674 (7)160.
O6W—H12W···O5Wix0.852.262.880 (6)130.

Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+1, −z; (iii) x+1, y, z; (iv) −x+2, −y, −z+1; (v) −x+2, −y, −z+2; (vi) x, y, z+1; (vii) −x+1, −y+1, −z+1; (viii) −x+1, −y, −z+1; (ix) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2190).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898. [PMC free article] [PubMed]
  • He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896. [PMC free article] [PubMed]
  • Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53. [PMC free article] [PubMed]
  • Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography