PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 September 1; 66(Pt 9): o2440.
Published online 2010 August 28. doi:  10.1107/S1600536810033386
PMCID: PMC3007846

2-(2,3-Dimethyl­phen­yl)-1H-isoindole-1,3(2H)-dione

Abstract

In the title compound, C16H13NO2, the 2,3-dimethyl­phenyl group and the 1H-isoindole-1,3(2H)-dione group are essentially planar, with r.m.s. deviations of 0.006 and 0.013 Å, respectively, and are oriented at an angle of 78.19 (3)° with respect to each other. In the crystal, weak C—H(...)O inter­actions link the mol­ecules, forming a zigzag chain parallel to the b axis. Futhermore, C—H(...)π inter­actions are present between the C—H group of isoindole and the 2,3-dimethyl­phenyl benzene ring. The H atoms of the ortho-methyl group are statistically disordered over two positions. Such disorder might be related to the antagonism between intra­molecular steric repulsions and inter­molecular C—H(...)O inter­actions.

Related literature

For background to Schiff bases containing 2,3-dimethyl­aniline and for related structures, see: Bocelli & Cantoni (1989 [triangle]); Chandrashekar et al. (1983 [triangle]); Izotova et al. (2009 [triangle]); Sarfraz et al. (2010 [triangle]); Tahir et al. (2010 [triangle]); Tariq et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2440-scheme1.jpg

Experimental

Crystal data

  • C16H13NO2
  • M r = 251.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2440-efi1.jpg
  • a = 7.8222 (3) Å
  • b = 8.4576 (3) Å
  • c = 19.4863 (6) Å
  • β = 91.441 (2)°
  • V = 1288.75 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.30 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.993
  • 9849 measured reflections
  • 2320 independent reflections
  • 1819 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.097
  • S = 1.04
  • 2320 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033386/dn2596sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033386/dn2596Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

We have reported crystal structures of Schiff bases containing 2,3-dimethylaniline (Sarfraz et al., 2010), (Tahir et al., 2010) and (Tariq et al., 2010). As part of our continuing interest in Schiff bases containing 2,3-dimethylaniline, we report here the structure of the title compound (I).

The crystal structure of related compounds (II), N-phenylphthalimide (Izotova et al., 2009), (III) N-m-tolylphthalimide (Chandrashekar et al., 1983) and (IV) N-(o-tolyl)phthalimide (Bocelli & Cantoni, 1989) have been already published.

In (I), the 2,3-dimethylanilinic moiety A (C1—C8) and the 1H-isoindole-1,3(2H)-dione group B (C9—C15/N1/O1/O2) are planar with r. m. s. deviations of 0.0056 and 0.0131 Å, respectively. The dihedral angle between A/B is 78.19 (3)° (Fig. 1).

The H-atoms of the ortho-methyl group are statistically disordered over two positions. Such disorder might be related to the antagonism between intramolecular C-H···N and intermolecular C-H···O interactions (Table 1). The weak C—H···O interactions links the molecule forming a non continuous zig-zag chain parallel to the b axis owing to the statistical distribution of the H atoms. Weak C-H···π interactions are also present (Table 1, where Cg2 is the centroid of the phenyl ring C1—C6).

Experimental

Equimolar quantities of 2,3-dimethylaniline and phthalic anhydride were refluxed in methanol for 48 h. The solution was kept at room temperature which affoarded white prism after 48 h.

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

The difference Fourier map showed that H-atoms of ortho-methyl are disordered. They were then geometrically located and treated as riding using the tools (AFIX 123) available in SHELXL97 (Sheldrick, 2008)

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are represented by small circles of arbitrary radii.

Crystal data

C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1819 reflections
a = 7.8222 (3) Åθ = 2.6–25.2°
b = 8.4576 (3) ŵ = 0.09 mm1
c = 19.4863 (6) ÅT = 296 K
β = 91.441 (2)°Prism, white
V = 1288.75 (8) Å30.30 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2320 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.6°
ω scansh = −8→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −10→10
Tmin = 0.980, Tmax = 0.993l = −23→23
9849 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2276P] where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.49485 (18)0.42949 (17)0.22907 (6)0.0925 (5)
O20.79930 (14)0.38827 (14)0.03357 (5)0.0628 (3)
N10.61379 (16)0.38436 (14)0.12397 (6)0.0490 (3)
C10.49387 (19)0.26593 (18)0.10015 (7)0.0467 (4)
C20.53838 (18)0.10792 (18)0.10503 (6)0.0450 (4)
C30.41581 (19)−0.00524 (18)0.08357 (7)0.0489 (4)
C40.2583 (2)0.0467 (2)0.05916 (7)0.0598 (4)
H40.1775−0.02780.04490.072*
C50.2167 (2)0.2044 (2)0.05521 (8)0.0671 (5)
H50.10920.23540.03880.080*
C60.3357 (2)0.3165 (2)0.07580 (8)0.0579 (4)
H60.30990.42370.07330.069*
C70.7094 (2)0.0574 (2)0.13251 (8)0.0591 (4)
H7A0.7165−0.05590.13180.089*0.50
H7B0.72470.09450.17880.089*0.50
H7C0.79700.10100.10460.089*0.50
H7D0.77560.14900.14500.089*0.50
H7E0.7675−0.00150.09800.089*0.50
H7F0.6951−0.00790.17230.089*0.50
C80.4548 (2)−0.1781 (2)0.08813 (9)0.0665 (5)
H8A0.3620−0.23720.06770.100*
H8B0.4697−0.20790.13540.100*
H8C0.5579−0.20010.06420.100*
C90.6040 (2)0.45618 (19)0.18862 (7)0.0555 (4)
C100.75207 (18)0.56363 (17)0.19457 (7)0.0457 (4)
C110.8017 (2)0.66315 (19)0.24722 (7)0.0562 (4)
H110.73930.67070.28710.067*
C120.9479 (2)0.7513 (2)0.23830 (8)0.0622 (4)
H120.98480.81990.27290.075*
C131.0403 (2)0.7399 (2)0.17923 (9)0.0652 (5)
H131.13870.80050.17490.078*
C140.9898 (2)0.6399 (2)0.12609 (8)0.0565 (4)
H141.05200.63260.08620.068*
C150.84406 (18)0.55212 (16)0.13486 (7)0.0432 (3)
C160.75805 (19)0.43515 (17)0.08932 (7)0.0463 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0969 (10)0.1151 (11)0.0678 (8)−0.0452 (9)0.0465 (8)−0.0311 (7)
O20.0700 (8)0.0772 (8)0.0420 (6)−0.0077 (6)0.0174 (5)−0.0097 (5)
N10.0550 (8)0.0515 (7)0.0412 (6)−0.0075 (6)0.0130 (5)−0.0041 (5)
C10.0521 (9)0.0521 (9)0.0363 (7)−0.0015 (7)0.0086 (6)−0.0002 (6)
C20.0462 (8)0.0558 (9)0.0332 (7)0.0017 (7)0.0064 (6)0.0019 (6)
C30.0528 (9)0.0580 (9)0.0364 (7)−0.0068 (7)0.0081 (6)0.0004 (6)
C40.0569 (10)0.0754 (12)0.0469 (9)−0.0121 (9)0.0012 (7)0.0016 (8)
C50.0491 (10)0.0938 (14)0.0580 (10)0.0064 (10)−0.0028 (8)0.0117 (9)
C60.0560 (10)0.0646 (10)0.0532 (9)0.0073 (8)0.0041 (7)0.0079 (8)
C70.0575 (10)0.0606 (10)0.0591 (9)0.0025 (8)0.0014 (8)0.0047 (8)
C80.0784 (13)0.0584 (10)0.0630 (10)−0.0083 (9)0.0117 (9)−0.0041 (8)
C90.0642 (10)0.0581 (10)0.0450 (8)−0.0058 (8)0.0175 (7)−0.0056 (7)
C100.0514 (9)0.0451 (8)0.0410 (7)0.0039 (7)0.0063 (6)0.0009 (6)
C110.0627 (11)0.0614 (10)0.0450 (8)0.0008 (8)0.0077 (7)−0.0068 (7)
C120.0637 (11)0.0645 (11)0.0581 (10)−0.0053 (9)−0.0037 (8)−0.0118 (8)
C130.0554 (10)0.0726 (12)0.0677 (11)−0.0122 (9)0.0030 (8)−0.0031 (9)
C140.0520 (10)0.0662 (10)0.0516 (9)−0.0021 (8)0.0103 (7)0.0020 (8)
C150.0460 (8)0.0444 (8)0.0394 (7)0.0049 (7)0.0045 (6)0.0039 (6)
C160.0507 (9)0.0494 (9)0.0392 (7)0.0038 (7)0.0090 (6)0.0029 (6)

Geometric parameters (Å, °)

O1—C91.1982 (17)C7—H7D0.9600
O2—C161.2079 (16)C7—H7E0.9600
N1—C161.3972 (17)C7—H7F0.9600
N1—C91.4025 (18)C8—H8A0.9600
N1—C11.4411 (19)C8—H8B0.9600
C1—C61.382 (2)C8—H8C0.9600
C1—C21.384 (2)C9—C101.474 (2)
C2—C31.411 (2)C10—C111.375 (2)
C2—C71.491 (2)C10—C151.3867 (18)
C3—C41.381 (2)C11—C121.380 (2)
C3—C81.496 (2)C11—H110.9300
C4—C51.375 (3)C12—C131.378 (2)
C4—H40.9300C12—H120.9300
C5—C61.381 (2)C13—C141.386 (2)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—C151.375 (2)
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600C15—C161.479 (2)
C7—H7C0.9600
C16—N1—C9111.33 (12)C2—C7—H7F109.5
C16—N1—C1125.81 (11)H7A—C7—H7F56.3
C9—N1—C1122.73 (11)H7B—C7—H7F56.3
C6—C1—C2122.96 (14)H7C—C7—H7F141.1
C6—C1—N1117.74 (14)H7D—C7—H7F109.5
C2—C1—N1119.25 (13)H7E—C7—H7F109.5
C1—C2—C3117.84 (14)C3—C8—H8A109.5
C1—C2—C7121.57 (14)C3—C8—H8B109.5
C3—C2—C7120.59 (14)H8A—C8—H8B109.5
C4—C3—C2118.69 (15)C3—C8—H8C109.5
C4—C3—C8120.68 (15)H8A—C8—H8C109.5
C2—C3—C8120.62 (15)H8B—C8—H8C109.5
C5—C4—C3122.39 (16)O1—C9—N1124.41 (15)
C5—C4—H4118.8O1—C9—C10129.49 (14)
C3—C4—H4118.8N1—C9—C10106.09 (11)
C4—C5—C6119.53 (16)C11—C10—C15121.76 (14)
C4—C5—H5120.2C11—C10—C9129.95 (13)
C6—C5—H5120.2C15—C10—C9108.29 (12)
C5—C6—C1118.59 (16)C10—C11—C12117.11 (14)
C5—C6—H6120.7C10—C11—H11121.4
C1—C6—H6120.7C12—C11—H11121.4
C2—C7—H7A109.5C13—C12—C11121.42 (15)
C2—C7—H7B109.5C13—C12—H12119.3
H7A—C7—H7B109.5C11—C12—H12119.3
C2—C7—H7C109.5C12—C13—C14121.41 (16)
H7A—C7—H7C109.5C12—C13—H13119.3
H7B—C7—H7C109.5C14—C13—H13119.3
C2—C7—H7D109.5C15—C14—C13117.26 (14)
H7A—C7—H7D141.1C15—C14—H14121.4
H7B—C7—H7D56.3C13—C14—H14121.4
H7C—C7—H7D56.3C14—C15—C10121.05 (13)
C2—C7—H7E109.5C14—C15—C16130.74 (12)
H7A—C7—H7E56.3C10—C15—C16108.21 (12)
H7B—C7—H7E141.1O2—C16—N1124.82 (14)
H7C—C7—H7E56.3O2—C16—C15129.14 (13)
H7D—C7—H7E109.5N1—C16—C15106.04 (11)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1—C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7D···N10.962.392.868 (2)110.
C7—H7F···O1i0.962.523.3486 (19)145.
C8—H8C···Cg2ii0.962.893.5644 (18)128
C11—H11···Cg2iii0.932.773.6798 (15)166

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2596).

References

  • Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1658–1660.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrashekar, K., Pattabhi, V. & Swaminathan, S. (1983). Pramana, 20, 19–22.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Izotova, L. Y., Ashurov, J. M., Ibragimov, B. T. & Weber, E. (2009). Acta Cryst. E65, o658. [PMC free article] [PubMed]
  • Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Tariq, R. H. (2010). Acta Cryst. E66, o2295. [PMC free article] [PubMed]
  • Tariq, M. I., Sarfraz, M., Tahir, M. N., Ahmad, S. & Hussain, I. (2010). Acta Cryst. E66, o2078. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography